• Title/Summary/Keyword: ZnO-precursor

Search Result 142, Processing Time 0.026 seconds

Modified Shrinking Core Model for Atomic Layer Deposition of TiO2 on Porous Alumina with Ultrahigh Aspect Ratio

  • Park, Inhye;Leem, Jina;Lee, Hoo-Yong;Min, Yo-Sep
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.519-523
    • /
    • 2013
  • When atomic layer deposition (ALD) is performed on a porous material by using an organometallic precursor, minimum exposure time of the precursor for complete coverage becomes much longer since the ALD is limited by Knudsen diffusion in the pores. In the previous report by Min et al. (Ref. 23), shrinking core model (SCM) was proposed to predict the minimum exposure time of diethylzinc for ZnO ALD on a porous cylindrical alumina monolith. According to the SCM, the minimum exposure time of the precursor is influenced by volumetric density of adsorption sites, effective diffusion coefficient, precursor concentration in gas phase and size of the porous monolith. Here we modify the SCM in order to consider undesirable adsorption of byproduct molecules. $TiO_2$ ALD was performed on the cylindrical alumina monolith by using titanium tetrachloride ($TiCl_4$) and water. We observed that the byproduct (i.e., HCl) of $TiO_2$ ALD can chemically adsorb on adsorption sites, unlike the behavior of the byproduct (i.e., ethane) of ZnO ALD. Consequently, the minimum exposure time of $TiCl_4$ (~16 min) was significantly much shorter than that (~71 min) of DEZ. The predicted minimum exposure time by the modified SCM well agrees with the observed time. In addition, the modified SCM gives an effective diffusion coefficient of $TiCl_4$ of ${\sim}1.78{\times}10^{-2}\;cm^2/s$ in the porous alumina monolith.

Zn2SiO4:Mn Phsophor Particles Prepared by Flame Spray Pyrolysis (화염분무열분해 공정에 의해 합성되어진 Zn2SiO4:Mn 형광체)

  • Kang Y. C.;Sohn J. R.;Jung K. Y.
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.600-606
    • /
    • 2004
  • $Zn_{2}SiO_{4}:Mn$ phosphor particles were prepared by a flame spray pyrolysis method. It has been generally known that the high-temperature flame enables fast drying and decomposition of droplets. In the present investigation, the morphology and luminescent property of $Zn_{2}SiO_{4}:Mn$ phosphor were controlled in a severe flame preparation condition. The particle formation in the flame spray pyrolysis process was achieved by the droplet-to-particle conversion without any evaporation of precursors, which made it possible to obtain spherical $Zn_{2}SiO_{4}:Mn$ particles of a pure phase from a droplet. Using colloidal solutions wherein dispersed nano-sized silica particles were adopted as a silicon precursor. $Zn_{2}SiO_{4}:Mn$ particles with spherical shape and filled morphology were prepared and the spherical morphology was maintained even after the high-temperature heat treatment, which is necessary to increase the photoluminescence intensity. The $Zn_{2}SiO_{4}:Mn$ particles with spherical shape, which were prepared by the flame spray pyrolysis and posttreated at $1150^{\circ}C$, showed good luminescent characteristics under vacuum ultraviolet (VUV) excitation.

Properties of Aluminum Doped Zinc Oxide Thin Film Prepared by Sol-gel Process

  • Yi, Sung-Hak;Kim, Jin-Yeol;Jung, Woo-Gwang
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.351-355
    • /
    • 2010
  • Transparent conducting aluminum-doped ZnO thin films were deposited using a sol-gel process. In this study, the important deposition parameters were investigated thoroughly to determine the appropriate procedures to grow large area thin films with low resistivity and high transparency at low cost for device applications. The doping concentration of aluminum was adjusted in a range from 1 to 4 mol% by controlling the precursor concentration. The annealing temperatures for the pre-heat treatment and post-heat treatment was $250^{\circ}C$ and 400-$600^{\circ}C$, respectively. The SEM images show that Al doped and undoped ZnO films were quite uniform and compact. The XRD pattern shows that the Al doped ZnO film has poorer crystallinity than the undoped films. The crystal quality of Al doped ZnO films was improved with an increase of the annealing temperature to $600^{\circ}C$. Although the structure of the aluminum doped ZnO films did not have a preferred orientation along the (002) plane, these films had high transmittance (> 87%) in the visible region. The absorption edge was observed at approximately 370 nm, and the absorption wavelength showed a blue-shift with increasing doping concentration. The ZnO films annealed at $500^{\circ}C$ showed the lowest resistivity at 1 mol% Al doping.

Thickness-dependent Electrical, Structural, and Optical Properties of ALD-grown ZnO Films

  • Choi, Yong-June;Kang, Kyung-Mun;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.31-35
    • /
    • 2014
  • The thickness dependent electrical, structural, and optical properties of ZnO films grown by atomic layer deposition (ALD) at various growth temperatures were investigated. In order to deposit ZnO films, diethylzinc and deionized water were used as metal precursor and reactant, respectively. ALD process window was found at the growth temperature range from $150^{\circ}C$ to $250^{\circ}C$ with a growth rate of about $1.7{\AA}/cycle$. The electrical properties were studied by using van der Pauw method with Hall effect measurement. The structural and optical properties of ZnO films were analyzed by using X-ray diffraction, field emission scanning electron microscopy, and UV-visible spectrometry as a function of thickness values of ZnO films, which were selected by the lowest electrical resistivity. Finally, the figure of merit of ZnO films could be estimated as a function of the film thickness. As a result, this investigation of thickness dependent electrical, structural, and optical properties of ZnO films can provide proper information when applying to optoelectronic devices, such as organic light-emitting diodes and solar cells.

Fabrication of ZnO incorporated TMA-A zeolite nanocrystals (ZnO를 담지한 TMA-A 제올라이트 나노결정의 제조)

  • Lee, Seok-Ju;Lim, Chang-Sung;Kim, Ik-Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.238-244
    • /
    • 2007
  • Nano-sized ZnO crystals were successfully incorporated using ion exchange method in TMA-A zeolite synthesized by the hydrothermal method. The optimal composition for the synthesis of TMA-A zeolite was resulted in a solution of $Al(i-pro)_3$:2.2 TEOS:2.4 TMAOH:0.3 NaOH:200 $H_2O$. 0.3g of TMA-A zeolite and 5mol of $ZnCl_2$ solution were employed for the preparation of ZnO incorporated TMA-A zeolite. The ZnO incorporated TMA-A zeolite precursors, prepared from the process of mixing, stirring, centrifugal separation and drying, were calcined at temperatures from 400 to $600^{\circ}C$ for 3 h. The crystallization process of ZnO incorporated TMA-A zeolite was analyzed by X-ray diffraction (XRD). The Brunaur-Emett-Teller (BET) surface area of the ZnO incorporated TMA-A zeolite was measured. Subsequently, the morphology and the particle size depending on the temperature and time were observed using scanning electron microscopy(SEM), transmission electron microscopy(TEM) and particle size analyzer.

Sol-Gel법을 이용한 YZO/Si 이종접합 구조의 제작과 정류특성

  • Heo, Seong-Eun;Kim, Won-Jun;Kim, Chang-Min;Lee, Hwang-Ho;Lee, Byeong-Ho;Lee, Yeong-Min;Kim, Deuk-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.350-350
    • /
    • 2013
  • Sol-gel법을 이용하여 p-Si 기판위에 yttrium이 도핑된 ZnO (YZO)를 성장하였다. ZnO의 precursor로는 zinc acetate dihydrate를, yttrium의 source로는 yttrium acetate hydrate를 사용하였으며, 용매와 안정제로는 각각 2-methoxy ethanol과 monoethanolamine (MEA)를 사용하였다. yttrium의 doping 농도에 따른 영향을 알아보기 위하여 1~4 at.%로 제작된 YZO sol을 각각 p-type Si 기판에 성장하였으며, 이 후 furnace를 이용하여 500oC에서 1시간 동안 열처리하였다. 성장된 YZO 박막의 표면과 두께를 SEM을 통하여 확인하였으며, XRD를 통한 구조적인 특성을 분석한 결과 모든 박막에서 뚜렷한 c-축 배양성을 갖는 ZnO (0002)피크를 확인하였다. Hall effect를 통하여 YZO는 모두 n-type 특성을 나타낸다는 것을 확인하였으며, 광학적인 특성은 PL을 통해서 분석하였다. n-YZO/p-Si 이종접합의 전류-전압 특성을 분석한 결과 뚜렷한 정류특성을 나타내었다.

  • PDF

Synthesis and Characterization of Rod-Shaped Ni-Zn Ferrite Particles (막대형 Ni-Zn 페라이트 입자의 합성 및 특성 평가)

  • Chun, Seung-Yeop;Hwang, Jin-Ah;Chun, Myoung-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.300-306
    • /
    • 2018
  • The rod-shaped $Ni_{0.5}Zn_{0.5}Fe_2O_4$ particles were synthesized via a topotactic reaction, in which goethite (${\alpha}-FeOOH$) particles are the main constituents. The phases, microstructures and magnetic properties of these particles were studied using XRD, FE-SEM and VSM. The precursor solution consisted of $NiSO_4{\cdot}xH_2O$, $ZnSO_4{\cdot}xH_2O$, goethite and D.I. water werereacted at four different temperatures (50, 70, 90, $100^{\circ}C$) to generate four differently precipitated particles respectively. During the co-precipitation reaction, the pH of the solution was maintained at 8.0 using NaOH. The particles co-precipitated and calcined at a temperature of $700^{\circ}C$, exhibited a rod-shape similar to its original goethite, which means that the shape of Ni-Zn ferrite particles can be topotactically controlled by the goethite. The particles synthesized at 70 and $90^{\circ}C$ have a saturation magnetization of 29 and 35 emu/g respectively; representing better values than the ones synthesized at the 50 and $100^{\circ}C$, in which some second phases such as $Fe_2O_3$ were observed.

Physical Properties of Mg0.05Zn0.95O Thin Films Grown by Sol-Gel Method According to Types of Indium Precursors (졸-겔법으로 성장시킨 Mg0.05Zn0.95O 박막의 Indium 전구체의 종류에 따른 물성에 관한 연구)

  • Choi, Hyo Jin;Lee, Min Sang;Kim, Hong Seung;Ahn, Hyung Soo;Jang, Nak Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.4
    • /
    • pp.256-261
    • /
    • 2021
  • Indium-doped Mg0.05Zn0.95O thin films were deposited on glass substrates by a sol-gel method. Three types of indium precursors such as indium chloride, indium acetate, and indium nitrate were used as doping sources. Physical properties of fabricated thin films were analyzed through XRD (x-ray diffraction), UV-vis spectrophotometer, Hall effect measurement, and EDS (energy dispersive x-ray spectroscopy). All In-doped thin films grown in this study exhibited a preferred orientation of (002) with over 80% transmittance. The results showed that the Mg0.05Zn0.95O thin film from indium chloride as the indium precursor has higher crystallinity and transmittance with lower resistivity when compared with those from other indium precursors.

Fabrication and Sensing Capability of Cholesterol Sensors Based on ZnO Nanofibers (산화아연 나노섬유 기반 콜레스테롤 센서의 제작과 성능)

  • Jo, So Yeon;Kim, Ji Yeong;Kim, Sang Sub
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.281-285
    • /
    • 2013
  • In the present work, ZnO nanofibers were applied to electrode materials for the detection of cholesterol. ZnO nanofibers were synthesized using the electrospinning technique with zinc acetate as a precursor. Electrospinning-synthesized ZnO nanofibers were uniformly distributed by properly controlling the electrospinning parameters. After the calcination treatment, nanofibers of pure ZnO phase were synthesized. Then, these fibers were successfully placed on Au-coated glass substrates by dispersion of ZnO nanofibers in ethanol, dropping, and drying, in sequence. Cholesterol oxidase was then immobilized onto the surface of the ZnO nanofibers. To enhance the immobilization, Nafion was additionally applied. The sensing performances of the fabricated ZnO nanofibers-based sensors were analyzed by cyclic voltammetry in terms of cholesterol concentration ranging from 100 to 400 mg/dl. In the I-V curves, measured by cyclic voltammetry, the ZnO nanofiber-based sensor showed a proportional current behavior with cholesterol concentrations in phosphate buffered saline solution. The sensitivity was measured and found to be $30.7nA/mM{\cdot}cm^2$, which is comparable to the values reported in the literature. After not only optimizing the shape of the ZnO nanofibers but also improving the adhesion nature between the ZnO nanofibers and the Au conducting layer, these fibers can be a good candidate for electrode materials in devices used to detect low concentrations of cholesterol in blood.

Synthesis and Characterization of ZnO/TiO2 Photocatalyst Decorated with PbS QDs for the Degradation of Aniline Blue Solution

  • Lee, Jong-Ho;Ahn, Hong-Joo;Youn, Jeong-Il;Kim, Young-Jig;Suh, Su-Jeong;Oh, Han-Jun
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.900-909
    • /
    • 2018
  • A $ZnO/TiO_2$ photocatalyst decorated with PbS quantum dots (QDs) was synthesized to achieve high photocatalytic efficiency for the decomposition of dye in aqueous media. A $TiO_2$ porous layer, as a precursor photocatalyst, was fabricated using micro-arc oxidation, and exhibited irregular porous cells with anatase and rutile crystalline structures. Then, a ZnO-deposited $TiO_2$ catalyst was fabricated using a zinc acetate solution, and PbS QDs were uniformly deposited on the surface of the $ZnO/TiO_2$ photocatalyst using the successive ionic layer adsorption and reaction (SILAR) technique. For the PbS $QDs/ZnO/TiO_2$ photocatalyst, ZnO and PbS nanoparticles are uniformly precipitated on the $TiO_2$ surface. However, the diameters of the PbS particles were very fine, and their shape and distribution were relatively more homogeneous compared to the ZnO particles on the $TiO_2$ surface. The PbS QDs on the $TiO_2$ surface can induce changes in band gap energy due to the quantum confinement effect. The effective band gap of the PbS QDs was calculated to be 1.43 eV. To evaluate their photocatalytic properties, Aniline blue decomposition tests were performed. The presence of ZnO and PbS nanoparticles on the $TiO_2$ catalysts enhanced photoactivity by improving the absorption of visible light. The PbS $QDs/ZnO/TiO_2$ heterojunction photocatalyst showed a higher Aniline blue decomposition rate and photocatalytic activity, due to the quantum size effect of the PbS nanoparticles, and the more efficient transport of charge carriers.