DOI QR코드

DOI QR Code

Physical Properties of Mg0.05Zn0.95O Thin Films Grown by Sol-Gel Method According to Types of Indium Precursors

졸-겔법으로 성장시킨 Mg0.05Zn0.95O 박막의 Indium 전구체의 종류에 따른 물성에 관한 연구

  • Choi, Hyo Jin (Major of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Lee, Min Sang (Major of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Kim, Hong Seung (Major of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Ahn, Hyung Soo (Major of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Jang, Nak Won (Major of Electrical and Electronics Engineering, Korea Maritime and Ocean University)
  • 최효진 (한국해양대학교 전자소재공학전공) ;
  • 이민상 (한국해양대학교 전자소재공학전공) ;
  • 김홍승 (한국해양대학교 전자소재공학전공) ;
  • 안형수 (한국해양대학교 전자소재공학전공) ;
  • 장낙원 (한국해양대학교 전기전자공학전공)
  • Received : 2021.04.06
  • Accepted : 2021.04.23
  • Published : 2021.07.01

Abstract

Indium-doped Mg0.05Zn0.95O thin films were deposited on glass substrates by a sol-gel method. Three types of indium precursors such as indium chloride, indium acetate, and indium nitrate were used as doping sources. Physical properties of fabricated thin films were analyzed through XRD (x-ray diffraction), UV-vis spectrophotometer, Hall effect measurement, and EDS (energy dispersive x-ray spectroscopy). All In-doped thin films grown in this study exhibited a preferred orientation of (002) with over 80% transmittance. The results showed that the Mg0.05Zn0.95O thin film from indium chloride as the indium precursor has higher crystallinity and transmittance with lower resistivity when compared with those from other indium precursors.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구(No.NRF-2019R1F1A1063959)와 2020년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구(P0012451, 2020년 산업전문인력역량강화사업)입니다.

References

  1. A. Janotti and C. G. Van de Walle, Rep. Prog. Phys., 72, 126501 (2009). [DOI: https://doi.org/10.1088/0034-4885/72/12/126501]
  2. P. N. Ni, C. X. Shan, B. H. Li, and D. Z. Shen, Appl. Phys. Lett., 104, 032107 (2014). [DOI: https://doi.org/10.1063/1.4862789]
  3. F. J. Klupfel, H. von Wenckstern, and M. Grundmann, Appl. Phys. Lett., 106, 033502 (2015). [DOI: https://doi.org/10.1063/1.4906292]
  4. D. J. Cohen, K. C. Ruthe, and S. A. Barnett, J. Appl. Phys., 96, 459 (2004). [DOI: https://doi.org/10.1063/1.1760239]
  5. A. Kaushal and D. Kaur, Sol. Energy Mater. Sol. Cells, 93, 193 (2009). [DOI: https://doi.org/10.1016/j.solmat.2008.09.039]
  6. A. Yeom, H. S. Kim, N. W. Jang, Y. Yoon, and H. S. Ahn, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 214 (2020). [DOI: https://doi.org/10.4313/JKEM.2020.33.3.214]
  7. C. A. Gupta, S. Mangal, and U. P. Singh, Appl. Surf. Sci., 288, 411 (2014). [DOI: https://doi.org/10.1016/j.apsusc.2013.10.048]
  8. F. Zhang, B. R. Jang, C. H. Kim, J. H. Lee, H. S. Kim, N. W. Jang, M. W. Pin, and W. J. Lee, J. Korean Phys. Soc., 62, 1295 (2013). [DOI: https://doi.org/10.3938/jkps.62.1295]
  9. M. Ohyama, H. Kouzuka, and T. Yoko, Thin Solid Films, 306, 78 (1997). [DOI: https://doi.org/10.1016/S0040-6090(97)00231-9]
  10. S. Alamdari, M. J. Tafreshi, and M. S. Ghamsari, Mater. Lett., 197, 94 (2017). [DOI: https://doi.org/10.1016/j.matlet.2017.03.113]
  11. M. Huang, S. Wang, X. Yin, G. Mu, G. Wan, X. Duan, and L. Yi, J. Phys. D: Appl. Phys., 50, 215106 (2017). [DOI: https://doi.org/10.1088/1361-6463/aa6a75]
  12. K. G. Saw, N. M. Aznan, F. K. Yam, S. S. Ng, and S. Y. Pung, PLoS One, 10, e0141180 (2015). [DOI: https://doi.org/10.1371/journal.pone.0141180]
  13. S. Benzitouni, M. Zaabat, A. Mahdjoub, A. Benaboud, and B. Boudine, Mater. Sci.-Pol., 36, 427 (2018). [DOI: https://doi.org/10.1515/msp-2018-0037]