• 제목/요약/키워드: ZnO oxides

검색결과 196건 처리시간 0.023초

ZnO 박막의 구조적, 전기적, 광학적 특성간의 상관관계를 고려한 박막태양전지용 투명전극 최적화 연구 (Optimization of ZnO-based transparent conducting oxides for thin-film solar cells based on the correlations of structural, electrical, and optical properties)

  • 오준호;김경국;송준혁;성태연
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.42.2-42.2
    • /
    • 2010
  • Transparent conducting oxides (TCOs) are of significant importance for their applications in various devices, such as light-emitting diodes, thin-film solar cells, organic light-emitting diodes, liquid crystal displays, and so on. In order for TCOs to contribute to the performance improvement of these devices, TCOs should have high transmittance and good electrical properties simultaneously. Sn-doped $In_2O_3$ (ITO) is the most commonly used TCO. However, indium is toxic and scarce in nature. Thus, ZnO has attracted a lot of attention because of the possibility for replacing ITO. In particular, group III impurity-doped ZnO showed the optoelectronic properties comparable to those of ITO electrodes. Al-doped ZnO exhibited the best performance among various doped ZnO films because of the high substitutional doping efficiency. However, in order for the Al-doped ZnO to replace ITO in electronic devices, their electrical and optical properties should further significantly be improved. In this connection, different ways such as a variation of deposition conditions, different deposition techniques, and post-deposition annealing processes have been investigated so far. Among the deposition methods, RF magnetron sputtering has been extensively used because of the easiness in controlling deposition parameters and its fast deposition rate. In addition, when combined with post-deposition annealing in a reducing ambient, the optoelectronic properties of Al-doped ZnO films were found to be further improved. In this presentation, we deposited Al-doped ZnO (ZnO:$Al_2O_3$ = 98:2 wt%) thin films on the glass and sapphire substrates using RF magnetron sputtering as a function of substrate temperature. In addition, the ZnO samples were annealed in different conditions, e.g., rapid thermal annealing (RTA) at $900^{\circ}C$ in $N_2$ ambient for 1 min, tube-furnace annealing at $500^{\circ}C$ in $N_2:H_2$=9:1 gas flow for 1 hour, or RTA combined with tube-furnace annealing. It is found that the mobilities and carrier concentrations of the samples are dependent on growth temperature followed by one of three subsequent post-deposition annealing conditions.

  • PDF

높은 비직선성을 갖는 ZnO 바리스터의 기본조성 결정과 첨가물에 의한 영향 (On the Standard Composition of ZnO Varistor having Higher Nonlinearity and the Effect of Additives)

  • 정주헉;진희창;마재평;백수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 전기.전자공학 학술대회 논문집(I)
    • /
    • pp.565-568
    • /
    • 1987
  • In order to determine the standard composition of ZnO varistor with higher nonlinearity, various contents of $MnO_2$, $Co_2O_3$ were added to ZnO-1.0m/o $Bi_2O_3$ system. Also, samples that contained small amount of Sb, Si-oxides in standard composition determined before were fabricated. As a result, the standard composition of higher nonlinearity-oriented ZnO varistor was shown as ZnO-1.0 m/o $Bi_2O_3$-1.0m/o $MnO_2$-1.0m/o $Co_2O_3$ and $Sb_2O_3$ largely enhanced nonlinear exponent and nonlinear resistance, hut SiO largely enhanced nonlinear exponent only.

  • PDF

Combinatorial Approach for Systematic Studies in the Development of Transparent Electrodes

  • Kim, Tae-Won;Kim, Sung-Dae;Heo, Gi-Seok;Lee, Jong-Ho
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.28-28
    • /
    • 2008
  • We have demonstrated the combinatorial synthesis of a variety of transparent conducting oxides using a combinatorial sputter system. The effects of a wide range of Nb or Zn doping rate on the optical and electrical properties of Indium-tin oxides (ITO) films were investigated. The Nb or Zn doped ITO films were fabricated on glass substrates, using combinatorial sputtering system which yields a linear composition spread of Nb or Zn concentration in ITO films in a controlled manner by co-sputtering two targets of ITO and $Nb_2O_5$ or ITO and ZnO. We have examined the work-function, resistivity, and optical properties of the Nb or Zn-doped ITO films. Furthermore, the effects of Hz plasma treatment on the physical properties of Ga or Zn doped ITO films synthesized by combinatorial sputter system were investigated.

  • PDF

Physical and Dielectric Properties of Aluminoborosilicate-Based Dielectrics Containing Different Divalent Oxides

  • Shin, Dong-Wook;Saji, Viswanathan S.;Gupta, Ravindra K.;Cho, Yong-Soo
    • 한국세라믹학회지
    • /
    • 제44권11호
    • /
    • pp.613-617
    • /
    • 2007
  • The variations of physical and dielectric properties of low temperature dielectrics based on typical aluminoborosilicate glasses modified with several divalent oxides were investigated. The divalent oxides studied here included CaO, MgO, BaO, SrO and ZnO. All samples containing either 35 wt% or 45 wt% alumina filler were prepared at the same processing condition and then fired at $850^{\circ}C$ for 30 min. The resultant characteristics of fired samples depended on the choice of the divalent ion and the content of the alumina filler. Except for the ZnO modification, all other samples containing 35 wt% filler demonstrated promising densification as they exhibited reasonably high densities of 3.07-3.31 $g/cm^3$ and high shrinkages of 14.0-16.4%. Particularly, the sample containing ZnO was distinguished with large variations compared to the base sample, which can be highlighted with earlier densification and crystallization at unexpectedly low temperatures. The negative effects of the ZnO modification on densification and dielectric properties were thought to be associated with earlier crystallization potentially by influencing effective densification via viscous flow. As an optimum composition, the sample containing only CaO showed the most promising characteristics such as $k{\sim}8.05$ and $tan{\delta}{\sim}0.0018$ when 35 wt% alumina filler was used.

Influence of Nanoporous Oxide Substrate on the Performance of Photoelectrode in Semiconductor-Sensitized Solar Cells

  • Bang, Jin Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.4063-4068
    • /
    • 2012
  • Oxide substrates in semiconductor-sensitized solar cells (SSSCs) have a great impact on their performance. $TiO_2$ has long been utilized as an oxide substrate, and other alternatives such as ZnO and $SnO_2$ have also been explored due to their superior physical properties over $TiO_2$. In the development of high-performance SSSCs, it is of significant importance to understand the effect of oxides on the electron injection and charge recombination as these two are major factors in dictating solar cell performance. In addition, elucidating the relationship between these two critical processes and solar cell performance in each oxide is critical in building up the basic foundation of SSSCs. In this study, ultrafast pump-probe laser spectroscopy and open-circuit decay analysis were conducted to examine the characteristics of three representative oxides ($TiO_2$, ZnO, and $SnO_2$) in terms of electron injection kinetics and charge recombination, and the implication of results is discussed.

LSMCD 장비를 이용 Boron 도핑 ZnO 박막제조 및 특성평가 (New Transparent Conducting B-doped ZnO Films by Liquid Source Misted Chemical Deposition Method)

  • 김길호;우성일;방정식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.307-308
    • /
    • 2008
  • Zinc oxide is a direct band gap wurtzite-type semiconductor with band gap energy of 3.37eV at room temperature. the n-type doped ZnO oxides, B doped ZnO (BZO) is widely studied in TCOs materials as it shows good electrical, optical, and luminescent properties. we focused on the fabrication of B doped ZnO films with glass substrate using the LSMCD at low temperature. And Novel boron-doped ZnO thin films were deposited and characterized from the structural, optical, electrical point of view. The structure, morphology, and optical properties of the films were studied as a function of by employing the XRD, SEM, Hall system and micro Raman system.

  • PDF

RF-Magnetron sputtering법을 이용한 ZnO buffer layer가 ZnO:(Al,P) 박막의 미세구조에 미치는 영향

  • 신승학;김종기;이준형;허영우;김정주
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.266.2-266.2
    • /
    • 2016
  • 최근 디스플레이 산업의 확대에 따라 투명 전도 산화물(Transparent Conducting Oxides:TCOs)의 수요가 급증하고 있다. 이 중 ZnO는 wide bandgap (3.37eV)와 large exciton binding energy (60meV)의 값을 가져 차세대 투명 전도 산화물, LED와 LD 등의 소자 소재로 각광받고 있다. ZnO는 electron을 내어놓는 native defect 때문에 기본적으로 n-type 물성을 띈다. 그래서 dopant를 이용해 p-type ZnO를 제작할 때 native defect를 줄이는 것이 중요한 요점이 된다. 이 때 buffer layer를 사용하여 native defect를 줄이는 방법이 사용되고 있다. 본연구에서는 RF-magnetron sputtering법을 이용하여 c-plane sapphire 기판 위에 다양한 조건의 ZnO buffer layer를 증착하고, 그 위에 ZnO:(Al,P) co-doping한 APZO를 증착하였다. ZnO buffer layer 증착조건의 변수는 증착온도와 Ar:O2의 비율을 변수로 두었다. 이러한 박막을 FE-SEM, XRD, Hall effect measurement, AFM을 통하여 미세구조와 물성을 관찰하였다. 이 때 APZO보다 낮은 증착온도에서 ZnO buffer layer가 증착되면 APZO를 증착하는 동안 chamber 내부에서 열처리하는 효과를 얻게 되고, UHV(Ultra High Vaccum)에서 열처리 될 때 ZnO buffer layer의 mophology와 결정성이 변하게 되는 모습을 관찰아혔다. 또한 본 실험을 통해 ZnO buffer layer의 증착 온도가 APZO의 증착온도보다 높을 때 제어 가능한 실험이 됨을 확인 할 수 있었다.

  • PDF

TPR/TPO 실험기법을 이용한 전이금속산화물의 산화-환원 특성 연구 (Redox Property of Transition Metal Oxides in Catalytic Oxidation)

  • 김영호;이호인
    • 공업화학
    • /
    • 제10권8호
    • /
    • pp.1161-1168
    • /
    • 1999
  • 3주기 전이금속(Cr~Zn)의 산화물 및 V, Mo, W의 산화물에 대하여 temperature-programmed reduction/trmperature-programmed oxidation(TPR/TPO) 실험을 통하여 그 산화-환원 특성을 조사하였다. TPO 곡선의 산화피크는 TPR 곡선의 환원피크와 비슷하거나 약간 낮은 온도에서 나타났으며, 환원피크에 비하여 온도 폭이 넓었다. 3주기 전이금속한화물의 산화 및 환원 과정의 활성화에너지는 33~149 kJ/mol 범위에 있는 반면, V, Mo, W 산화물에서는 더 컸다. 금속산화물의 산화 및 환원 과정의 활성화에너지 변화는 금속-산소 결합세기에 비례하였다. 환원(TPR) 및 산화(TPO) 과정에 대한 활성화에너지 차이(${\Delta}E_a$)가 작을수록 o-자일렌 산화반응에서 금속산화물 촉매의 활성화에너지도 작았다. 금속한화물 촉매에서 o-자일렌 산화반응은 금속산화물 표면의 산화-환원 과정을 반복하는 Mars-van Krevelen 반응 메카니즘으로 설명될 수 있음을 확인하였다.

  • PDF

Transparent Conducting Zinc-Indium Oxides Thin Films by an Electron Beam Evaporation Method

  • Lee, Choon-Ho;Kim, Sun-Il
    • 한국세라믹학회지
    • /
    • 제41권2호
    • /
    • pp.102-105
    • /
    • 2004
  • ZnO-In$_2$O$_3$ films were fabricated on Corning 1737 glass substrate by an electron beam evaporation technique and their characteristics were investigated. The composition of ZnO-In$_2$O$_3$ films had a marked effect on the electrical properties of the films. The ZnO-In$_2$O$_3$ films showed superior transparent-conducting characteristics with increase of Zn content. The resistivity and carrier concentration of the film having Zn content of 45 at% are 4.45${\times}$10$^{-3}$ cm and 3.1${\times}$10$^{19}$ cm$^{-3}$ , respectively. Also, the transmittance was higher than 80% throughout the visible range. The average roughness of the film was 14.6 $\AA$ in terms of root mean square.