Redox Property of Transition Metal Oxides in Catalytic Oxidation

TPR/TPO 실험기법을 이용한 전이금속산화물의 산화-환원 특성 연구

  • Kim, Young-Ho (Department of Chemical Engineering, Kunsan National University) ;
  • Lee, Ho-In (School of Chemical Engineering, Seoul National University)
  • 김영호 (군산대학교 화학공학과) ;
  • 이호인 (서울대학교 응용화학부)
  • Received : 1999.08.04
  • Accepted : 1999.11.27
  • Published : 1999.12.10

Abstract

The redox property of oxide materials of the 3rd period transition metals(Cr~Zn), V, Mo, and W was studied with temperature-programmed reduction/temperature-programmed oxidation(TPR/TPO) experiment. The peak temperatures of TPO spectra were equal to or lower than those of TPR spectra. And the peak shapes of TPO spectra were broader than those of TPR ones. The activation energies of TPR/TPO for the oxides of the 3rd period transition metals showed in the range of 33~149 kJ/mol, while for the oxides of V, Mo, and W, they showed relatively higher values. The change of activation energies of TPR/TPO with various metal oxides showed a similar trend to the change of their metal-oxygen bond strengths. The change of activation energies of o-xylene oxidation for various metal oxides was proportional to the difference (${\Delta}E_a$) between the activation energy of TPR and that of TPO. From these results, we concluded that the oxidation of o-xylene over various metal oxide catalysts follows the Mars-van Krevelen mechanism including the surface reduction-oxidation of the metal oxide itself.

3주기 전이금속(Cr~Zn)의 산화물 및 V, Mo, W의 산화물에 대하여 temperature-programmed reduction/trmperature-programmed oxidation(TPR/TPO) 실험을 통하여 그 산화-환원 특성을 조사하였다. TPO 곡선의 산화피크는 TPR 곡선의 환원피크와 비슷하거나 약간 낮은 온도에서 나타났으며, 환원피크에 비하여 온도 폭이 넓었다. 3주기 전이금속한화물의 산화 및 환원 과정의 활성화에너지는 33~149 kJ/mol 범위에 있는 반면, V, Mo, W 산화물에서는 더 컸다. 금속산화물의 산화 및 환원 과정의 활성화에너지 변화는 금속-산소 결합세기에 비례하였다. 환원(TPR) 및 산화(TPO) 과정에 대한 활성화에너지 차이(${\Delta}E_a$)가 작을수록 o-자일렌 산화반응에서 금속산화물 촉매의 활성화에너지도 작았다. 금속한화물 촉매에서 o-자일렌 산화반응은 금속산화물 표면의 산화-환원 과정을 반복하는 Mars-van Krevelen 반응 메카니즘으로 설명될 수 있음을 확인하였다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. Transition Metal Oxides H. H. Kung
  2. Gordon Research Conference on Catalysis J. W. Jenkins
  3. Temperature programmed Reduction for Solid Materials Characterization A. Jones;B. D. McNicol
  4. Rev. -Sci. Eng. v.26 R. R. Chianelli
  5. Solid State Chemistry in Catalysis R. K. Grasselli;J. F. Brazdil
  6. J. Catal. v.106 J. S. Lee;S. T. Oyama;M. Boudart
  7. Surface and Near-Surface Chemistry of Oxide Materials J. Nowotny;L. -C. Dufour
  8. Catal. Rev. Sci. Eng. v.19 J. Haber;A. Bielanski
  9. Adsorption and Catalysis on Oxide Surfaces M. Che;M. Che(ed.);G. C. Bond(ed.)
  10. New Horizons in Catalysis M. Ai;T. Seiyama(ed.);K. Tanabe(ed.)
  11. 공업화학 v.2 이근대;이호인
  12. J. Catal. v.116 D. C. Vermaire;P. C. van Berge
  13. Appl. Catal. v.3 R. Brown;M. E. Cooper;D. A. Whan
  14. J. Catal. v.106 Tang Ren-Yuan;Zhang Su;Wang Chengyu;Liang Dongbai;Lin Liwu
  15. J. Catal. v.97 H. F. J. Van't Blik;R. Prins
  16. J. Catal v.97 B. A. Sexton;A. E. Hughes;T. W. Turney
  17. J. Catal v.99 B. Viswanathan;R. Gopalakrishnan
  18. J. Catal. v.37 S. D. Robertson;B. D. McNicol;J. H. de Baas;S. C. Kloet;J. W. Jenkins
  19. J. Catal v.76 J. Zielinski
  20. J. Catal v.63 E. E. Unmuth;L. H. Schwartz;J. B. Butt
  21. J. Chem. Soc. Faraday Trans. Ⅰ. v.77 S. J. Gentry;N. W. Hurst;A. Jones
  22. Bull. Korean Chem. Soc. Y. H. Kim;H.-I. Lee
  23. J. Chem. Soc. Faraday Trans. Ⅰ. v.75 S. J. Gentry;N. W. Hurst;A. Jones
  24. Adv. Catal. v.17 R. J. Cvetanovic;Y. Amenomiya
  25. J. Phys. Chem. v.73 Y. Kera;K. Hirota
  26. J. Catal v.83 M. Gasior;T. Machej
  27. Catal. Rev. -Sci. Eng. v.10 L. K. Doraiswamy;D. G. Tajbl
  28. Catal. Rev. -Sci. Eng. v.19 M. S. Wainwright;N. R. Foster
  29. Chem. Eng. Sci. Spec. Suppl. v.3 P. Mars;D. W. van Krevelen