• Title/Summary/Keyword: ZnO deposition

Search Result 809, Processing Time 0.031 seconds

Effect of Thermal Annealing and Growth of ZnO:Li Thin Film by Pulesd Laser Deposition (펄스 레이저 증착법에 의한 ZnO:Li 박막 성장과 열처리 효과)

  • Hong Kwangjoon
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.293-300
    • /
    • 2005
  • ZnO:Li epilayers were synthesized on sapphire substrates by the pulesd laser deposition (PLD) after the surface of the ZnO:Li sintered pellet was irradiated by the ArF (193 nm) excimer laser. The growth temperature was fixed at $400^{\circ}C$. The crystalline structure of epilayers was investigated by the photoluminescence (PL) and double crystal X-ray diffraction (DCXD). The carrier density and mobility of epilayers measured by van der Pauw-Hall method are $2.69\times10cm^{-3}$ and $52.137cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of epilayers obtained from the absorption spectra is well described by the Varshni's relation, $E_g(T)=3.5128eV{\cdot}(9.51\times10^{-4}eV/K)T^2/(T+280K)$. After the as-grown ZnO:Li epilayer was annealed in Zn atmospheres, oxygen and vaccum the origin of point defects of ZnO:Li has been investigated by PL at 10 K. The Peaks of native defects of $V_{zn},\;V_o,\;Zn_{int},\;and\;O_{int}$ showned on PL spectrum are classified as a donors or accepters type. We confirm that $ZnO:Li/Al_2O_3$ in vacuum do not form the native defects because ZnO:Li epilayers in vacuum existe in the form of stable bonds.

p-n Heterojunction Composed of n-ZnO/p-Zn-doped InP

  • Shim, Eun-Sub;Kang, Hong-Seong;Kang, Jeong-Seok;Pang, Seong-Sik;Lee, Sang-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.1
    • /
    • pp.1-3
    • /
    • 2002
  • A p-n junction was obtained by the deposition of an n-type ZnO thin film on a p-type Zn-doped InP substrate. The Zn-doped InP substrate has been made by the diffusion of Zn with sealed ampoule technique. The ZnO deposition process was performed by pulsed laser deposition (PLD). The p-n junction was formed and showed typical I-V characteristics. We will also discuss about the realization of an ultraviolet light-emitting diode (LED). The structure of n-ZnO/p-Zn-doped InP could be a good candidate for the realization of an ultraviolet light-emitting diode or an ultraviolet laser diode.

Investigation on the Micro-photoluminescence of ZnO Thin Films Grown by Pulsed Laser Deposition (펄스 레이져 증착법으로 성장한 ZnO 박막의 마이크로 PL 특성 분석)

  • Lee, Deuk-Hee;Leem, Jae-Hyeon;Kim, Sang-Sig;Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.756-759
    • /
    • 2009
  • We described the growth of undoped ZnO thin films and their optical properties changing with a various growth temperature. The undoped ZnO thin films were grown on $c-Al_2O_3$ substrates using pulsed laser deposition (PLD) at room temperature, 200, 400, and $600^{\circ}C$, respectively. Field emission microscopy (FE-SEM) measurements showed that the grain size of undoped ZnO thin films are increasing as a increase of growth temperature. In addition, we were investigated that the structural and optical properties of undoped ZnO thin films by x-ray diffraction (XRD) and photoluminescence (PL) studied. Also, we could confirmed that the exciton luminescence was strongly related to charge trap by grain boundary of the samples using micro-PL measurement.

Electrodeposition of SnO2-doped ZnO Films onto FTO Glass

  • Yoo, Hyeonseok;Park, Jiyoung;Kim, Yong-Tae;Kim, Sunkyu;Choi, Jinsub
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • Well aligned $SnO_2$-doped ZnO nanorods were prepared by single step or 2-step electrochemical depositions in a mixture solution of zinc nitrate hexahydrate, ammonium hydroxide solution and 0.1 M tin chloride pentahydrate. The morphologies of electrochemically deposited $SnO_2$-doped ZnO were transformed from plain (or network) structures at low reduction potential to needles on hills at high reduction potential. Well aligned ZnO was prepared at intermediate potential ranges. Reduction reagent and a high concentration of Zn precursor were required to fabricate $SnO_2$ doped ZnO nanorods. When compared to results obtained by single step electrochemical deposition, 2-step electrochemical deposition produced a much higher density of nanorods, which was ascribed to less potential being required for nucleation of nanorods by the second-step electrochemical deposition because the surface was activated in the first-step. Mechanisms of $SnO_2$ doped ZnO nanorods prepared at single step or 2-step was described in terms of applied potential ranges and mass-/charge- limited transfer.

Characterization of Al-doped ZnO Thin Films by Atomic Layer Deposition (원자층 증착법으로 증착한 Al을 도핑한 ZnO 박막의 특성평가)

  • Shin, Woong-Chul;Choi, Kyu-Jeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.175-175
    • /
    • 2008
  • 투명전극으로 사용되고 있는 Indium tin oxide (ITO) 박막은 전기적 전도도와 기판과의 접확성, 화학적 안정성, 광투과율 등의 특성과 함께 우수한 전기 광학적 거동을 보이고 있다. 그러나 ITO는 고가의 재료이기 때문에 대체 투명전극으로 Al을 도핑한 ZnO 박막의 연구가 활발히 진행되고 있다. ZnO:Al 박막은 chemical vapor deposition, reactive magnetron sputtering, electron-beam evaporation, pulsed laser deposition 등의 당양한 방법을 이용하여 증착하였다. 그러나 최근 낮은 온도에서 대면적의 균일성과 우수한 특성 때문에 atomic layer depositon (ALD) 방법을 이용하여 많은 연구가 진행되고 있으며, 이런 투명전극은 태양전지를 위해 연구되어지고 있다. 따라서 본 연구에서는 ALD 방법으로 Al의 도핑 양을 조절하여, ZnO:Al 박막을 제조하여 그 특성을 평가하고, 또한 ZnO TFT를 제작하여 발표하고자 한다. ZnO와 ZnO:Al 박막은 실리콘과 유리 기판 위에 ALD (Lucida-D200, NCD Technology) 장치로 증착하였다. DEZn, TMA, $H_2O$는 ZnO와 ZnO:Al 박막을 증착하기 위한 전구체와 반응가스로 사용하였다. 증착된 박막은 XRD와 HRTEM을 이용하여 결정구조와 미세구조를 분석하였다. AFM과 4-point probe를 이용하여 증착된 박막의 표면 거칠기와 면저항을 관찰하였다. semiconductor parameter 분석기를 이용하여 제작된 ZnO TFT를 평가하였다.

  • PDF

Effect of Depositon Variables and Heat-treatment on the Growth Charateristics and Electrical Resistivity of ZnO Thin Film by Sputtering (증착변수 및 열처리 효과가 스퍼터링된 ZnO 박막의 성장 특성 및 전기비저항에 미치는 영향)

  • 하재수;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.7
    • /
    • pp.733-739
    • /
    • 1998
  • C-axis oriented zinc oxide thin films were deposited on Cornign 1737 glass substrate by an rf magnetron sputtering technique. The effects of deposition parameters and post heat-treatment on the crystallinity and electical properties of ZnO films were investigaed. As-deposited ZnO films showed the strong c-axis growth and excellent crystallinity under the deposition conditions as follows: substrate temperature 350$^{\circ}C$ ; growth and excellent crystallinity under the deposition conditions as follows ; substrate temperature 350$^{\circ}C$ rf power 75W ; gas pressure 6m Torr; percentage of oxygen 50% The higher heat-treating temperatue was the stronger c-axis growth and the better crystallinity of the deposited ZnO films were. The resistivity of ZnO films was significantly affected by deposition parameters and post heat-treatment. With increasing increased. After post heat-treating at 400$^{\circ}C$ in air the resistivity of ZnO films increased but post heat-treat-ing temperature 500$^{\circ}C$ rather diminished the film resistivity.

  • PDF

Preparation of High Quality ZnO Thin Films by Separated Pulsed Laser Deposition (분리형 펄스 레이져 증착법을 이용한 ZnO 박막의 특성에 관한 연구)

  • Park, Sang-Moo;Lee, Boong-Joo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.818-824
    • /
    • 2008
  • The Separated Pulsed Laser Deposition (SPLD) technique uses two chambers that are separated by a conic metallic wall with a central orifice. The pressures of ablation chamber and deposition chamber were controlled by the differential vacuum system. We deposited zinc oxide (ZnO) thin films by SPLD method to obtain high quality thin films. When the bias voltage of +500 V was applied between a substrate and an orifice, the ZnO thin film was deposited efficiently. The deposited ZnO thin film at ablation chamber gas pressure of Ar 5 mTorr showed the sharpest ultraviolet absorption edge indicatory the band gap of about 3.1 eV. ZnO thin films were deposited using effect of electric and magnetic fields in the SPLD method. E${\times}$B drift happened by an electric fields and a magnetic fields, activated plasma plume, as a result the film surface became very smooth. When the bias voltage of +500 V and magnet of 0,1 T were applied the ZnO thin films surface state showed high quality. Grain size was 41.99 nm and RMS was 0.84 nm.

Quality prediction method by using ZnO thin film deposition process modeling (ZnO 박막 증착 공정 모델링에 의한 품질 예측 기법)

  • Lim, Keun-Young;Chung, Doo-Yeon;Lee, Sang-Keuk;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.163-164
    • /
    • 2006
  • ZnO deposition parameters are not independent and have a nonlinear and complex properties respectively. Therefore, finding optimal process conditions are very difficult and need to do many experiments. To predict ZnO deposition result, neural network was used. To gather training data, Si, GaAs, and Glass were used for substrates, and substrate temperature, work pressure, RF power were $50-500^{\circ}C$, 15 mTorr, and 180-210 W respectively, and the purity of target was ZnO 4N. For predicting the result of ZnO deposition process exactly, sensitivity analysis and drawing a response surface was added. The temperature of substrate was evaluated as a most important variable. As a result, neural network could verify the nonlinear and complex relations of variables and find the optimal process condition for good quality ZnO thin films.

  • PDF

A Study on the Characteristic of n-ZnO:In/p-Si (111) Heterostructure by Pulsed Laser Deposition (PLD 법으로 증착된 n-ZnO:In/p-Si (111) 이종접합구조의 특성연구)

  • Jang, Bo-Ra;Lee, Ju-Young;Lee, Jong-Hoon;Kim, Jun-Je;Kim, Hong-Seung;Lee, Dong-Wook;Lee, Won-Jae;Cho, Hyeong-Kyun;Lee, Ho-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.419-424
    • /
    • 2009
  • ZnO films doped with different contents of indium ($0.1{\sim}10$ at.%) were deposited on Si (111) substrate by Pulsed Laser Deposition (PLD). The structural, electrical and optical properties of the films were investigated using XRD, AFM, Hall and PL measurement. Results showed that un-doped ZnO film had (002) plane as the c-axis orientated growth, whereas indium doped ZnO films exhibited the peak of (002) and the weak (101) plane. In addition, in the indium doped ZnO films, the electron concentration is ten times higher than that of un-doped ZnO film, while the resistivity is ten times lower than that of un-doped ZnO film. The indium doped ZnO films have UV emission about 380 nm and show a red shift with increasing contents of indium. The I-V curve of the fabricated diode show the typical diode characteristics and have the turn on voltage of about 2 V.

Fabrication of Conductive ZnO Thin Filn Using UV-Enhanced Atomic Layer Deposition

  • Yang, Da-Som;Kim, Hong-Beom;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.373-373
    • /
    • 2012
  • We fabricated conductive zinc oxide (ZnO) thin film at low temperature by UV-enhanced atomic layer deposition. The atomic layer deposition relies on alternate pulsing of the precursor gases onto the substrate surface and subsequent chemisorption of the precursors. In this experiment, diethylzinc (DEZ) and $H_2O$ were used as precursors with UV light. The UV light was very effective to improve the conductivity of the ZnO thin film. The thickness, transparency and resistivity were investigated by ellisometry, UV-visible spectroscopy and Four-point probe.

  • PDF