• Title/Summary/Keyword: ZnO:Ga film

Search Result 322, Processing Time 0.024 seconds

Photoluminescence Behaviors of the ZnGa2O4 Phosphor Thin Films on Al2O3 substrates as a Function of Oxygen Pressures (Al2O3 기판위에 증착한 ZnGa2O4 형광체 박막의 산소분압에 따른 형광특성)

  • Yi, Soung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.118-123
    • /
    • 2002
  • $ZnGa_2O_4$ thin film phosphors have been deposited using a pulsed laser deposition technique on $Al_2O_3$(0001) substrates at a substrate temperature of $550^{\circ}C$ with various oxygen pressures 100, 200 and 300 mTorr. The films grown under different growth oxygen pressures have been characterized using microstructural and luminescent measurements. The different photoluminescence (PL) characteristics with the increase in oxygen pressures may result from the change of the crystallinity and the composition ratio of Zn and Ga in the films. The luminescent spectra show a broad band extending from 300 to 600 nm peaking at 460 nm. The PL brightness data obtained from the $ZnGa_2O_4$ films grown under optimized conditions have indicated that the sapphire is a promising substrate for the growth of high quality $ZnGa_2O_4$ thin film phosphor.

Preparation AZO(ZnO:Al) thin film for FBAR by FTS method (대향타겟스퍼터링법에 의한 FBAR용 AZO(ZnO:Al) 전극의 제작)

  • Keum, M.J.;Shin, S.K.;Ga, C.H.;Chu, S.N.;Kim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.172-175
    • /
    • 2003
  • ZnO:Al thin film for application to FBAR's bottom electrode using ZnO piezoelectric thin film were prepared by FTS, in order to improve the crystallographic properties of ZnO thin films because the ZnO:Al thin film and ZnO thin films structure is equal each other. So we prepared the ZnO:Al thin film with oxygen gas flow rate. Thickness and c-axis preferred orientation and electric properties of ZnO:Al bottom electrode were evaluated by $\alpha$-step, XRD and 4-point probe..

  • PDF

Effects of Different Dopants(B, AI, Ga, In) on the Properties of Transparent conducting ZnO Thin Films (B, Al, Ga, In의 도핑물질이 투명 전도성 ZnO 박막의 특성에 미치는 영향)

  • No, Young-Woo;Cho, Jong-Rae;Son, Se-Mo;Chung, Su-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.242-248
    • /
    • 2008
  • The structural, optical and electrical properties of ZnO films doped with 1.5 at% of 3A materials(B, Al, Ga, In) were studied by sol-gel process. The films were found to be c-axis (002) oriented hexagonal structure on glass substrate, when post heated at 500 $^{\circ}C$. The surface of the films showed a uniform and nano size microstructure and the crystalline size of doped films decreased. The lattice constants of ZnO:B/Al/Ga increased than that of ZnO, while ZnO:In decreased. All the films were highly transparent(above 90 %) in the visible region. The energy gaps of ZnO:B/Al/Ga were increased a little, but that of ZnO:In was not changed. The resistivities of ZnO:Al/Ga/In were less than 0.1 $\Omega$cm. All the films showed a semiconductor properties in the light or temperature, however ZnO:In was less sensitive to it. A figure of merit of ZnO:In had the highest value of 0.025 $\Omega^{-1}$ in all samples.

Hot carrier induced device degradation in amorphous InGaZnO thin film transistors with source and drain electrode materials (소스 및 드레인 전극 재료에 따른 비정질 InGaZnO 박막 트랜지스터의 소자 열화)

  • Lee, Ki Hoon;Kang, Tae Gon;Lee, Kyu Yeon;Park, Jong Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.82-89
    • /
    • 2017
  • In this work, InGaZnO thin film transistors with Ni, Al and ITO source and drain electrode materials were fabricated to analyze a hot carrier induced device degradation according to the electrode materials. From the electrical measurement results with electrode materials, Ni device shows the best electrical performances in terms of mobility, subthreshold swing, and $I_{ON}/I_{OFF}$. From the measurement results on the device degradation with source and drain electrode materials, Al device shows the worst device degradation. The threshold voltage shifts with different channel widths and stress drain voltages were measured to analyze a hot carrier induced device degradation mechanism. Hot carrier induced device degradation became more significant with increase of channel widths and stress drain voltages. From the results, we found that a hot carrier induced device degradation in InGaZnO thin film transistors was occurred with a combination of large channel electric field and Joule heating effects.

Thermally stability of transparent Ga-doped ZnO thin films for TeO applications (투명 전도막 응용을 위한 Ga 도핑된 ZnO 박막의 열적 안정성에 관한 연구)

  • Oh, Sang-Hoon;Ahn, Byung-Du;Lee, Choong-Hee;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.48-49
    • /
    • 2006
  • Highly conductive and transparent films of Ga-doped ZnO have been prepared by pulsed laser deposition using a ZnO target with 3 wt% ${Ga_2}{O_3}$ dopant. Films with the resistivity as low as $3.3{\times}10^{-4}{\Omega}cm$ and the transmittance above 80 % at the wavelength of 400 to 800 nm can be fabricated on glass substrate at room temperature. It is shown that a stable resistivity for the use in oxidation ambient at high temperature can be obtained for the films. Heat treatments were performed to examine the thermal stability of ZnO and GZO films at ptemperature range from $100^{\circ}C$ to $400^{\circ}C$ in $O_2$ ambient for 30 minutes. The resistivity of ZnO film annealed at $400^{\circ}C$ increased by two orders of magnitude, in case of GZO film was relatively stable up to at $400^{\circ}C$. For practical applications at high temperatures the thermal stability of resistivity of GZO thin films might become an advantage for transparent electrodes.

  • PDF

Luminescence Characteristics of ZnGa2O4:Mn2+,Cr3+ Phosphor and Thick Film

  • Cha, Jae-Hyeok;Choi, Hyung-Wook
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.11-15
    • /
    • 2011
  • In this study, $ZnGa_2O_4$ phosphors in its application to field emission displays and electroluminescence were synthesized through the precipitation method and $Mn^{2+}$ ions. A green luminescence activator, $Cr^{3+}$ ions, and a red luminescence activator were separately doped into $ZnGa_2O_4$, which was then screen printed to an indium tin oxide substrate. The thick films of the $ZnGa_2O_4$ were deposited with the various thicknesses using nano-sized powder. The best luminescence characteristics were shown at a thickness of 60 ${\mu}m$. Additionally, green-emission $ZnGa_2O_4:Mn^{2+}$ and red-emission $ZnGa_2O_4:Cr^{3+}$ phosphor thick films, which have superior characteristics, were manufactured through the screen-printing method. These results indicate that $ZnGa_2O_4$ phosphors prepared through the precipitation method have wide application as phosphor of the full color emission.

Effect of Annealing on the Structural, Electrical and Optical Characteristics of Ga-doped ZnO(GZO)films (Ga doped ZnO 박막의 열처리 조건에 따른 구조 및 전기적 특성에 관한 연구)

  • Oh, Su-Young;Kim, Eung-Kwon;Lee, Tae-Yong;Kang, Hyun-Il;Kim, Bong-Seok;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.776-779
    • /
    • 2007
  • In this study we present the effect of annealing temperatures on the structural, electrical and optical characteristics of Ga-doped ZnO (GZO) films. GZO target is deposited on coming 7059 glass substrates by DC sputtering. and then GZO films are annealed at temperatures of 400, 500, $600^{\circ}C$ in air ambient for 20 min. in this case of as-grown film, it shows the resistivity of $6{\times}10^{-1}{\Omega}{\cdot}cm$ and transmittance under 85%, whereas the electrical and optical properties of film annealed at $500^{\circ}C$ are enhanced up to $1.9{\times}10^{-3}{\Omega}{\cdot}cm$ and 90%, respectively.

Effect of Process Variation of Al Grid and ZnO Transparent Electrode on the Performance of Cu(In,Ga)Se2 Solar Cells (Al 그리드와 ZnO 투명전도막 의 공정변화에 따른 Cu(In,Ga)Se2 박막태양전지의 특성 연구)

  • Cho, Bo Hwan;Kim, Seon Cheol;Mun, Sun Hong;Kim, Seung Tae;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.1
    • /
    • pp.32-38
    • /
    • 2015
  • CIGS solar cell consisted of various films. In this research, we investigated electrode materials in $Cu(In,Ga)Se_2$ (CIGS) cells, including Al-doped ZnO (ZnO:Al), intrinsic ZnO (i-ZnO), and Al films. The sputtered ZnO:Al film with a sputtering power at 200W showed the lowest series resistance and highest cell efficiency. The electrical resistivity of the 200-W sputtered ZnO:Al film was $5.2{\times}10^{-4}{\Omega}{\cdot}cm$ by the rapid thermal annealing at $200^{\circ}C$ for 1 min. The electrical resistivity of i-ZnO was not measurable due to its high resistance. But the optical transmittance was highest with less oxygen supply and high efficiency cell was achieved with $O_2/(Ar+O_2)$ ratio was 1% due to the increase of short-circuit current. No significant change in the cell performance by inserting a Ni layer between Al and ZnO:Al films was observed.

Structural Evolution of ZnO:Ga Thin Film on Profiled Substrate Grown by Radio Frequency Sputtering

  • Sun, J.H.;Kim, J.H.;Ahn, B.G.;Park, S.Y.;Jung, E.J.;Lee, J.H.;Kang, H.C.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.72-72
    • /
    • 2011
  • Recently, Zinc oxide (ZnO) nano-structures have been received attractive attention because of their outstanding optical and electrical properties. It might be a promising material considered for applications to photonic and electronic devices such as ultraviolet light emitting diode, thin film transistor, and gas sensors. ZnO nano-structures can be typically synthesized by the VLS growth mode and self-assembly. In the VLS growth mode using various growth techniques, the noble metal catalysts such as Au and Sn were used. However, the growth of ZnO nano-structures on nano-crystalline Au seeds using radio frequency (RF) magnetron sputtering might be explained by the profile coating, i.e. the ZnO nano-structures were a morphological replica of Au seeds. Ga doped ZnO (ZnO:Ga) nano-structures using this concept were synthesized and characterized by XRD, AFM, SEM, and TEM. We found that surface morphology is drastically changed from initial islands to later sun-flower typed nano-structures. We will present the structural evolution of ZnO:Ga nano-structures with increasing the film thickness.

  • PDF

Properties of the RF Sputter Deposited n-ZnO Thin-Film and the n-ZnO/p-GaN heterojunction LED (RF스퍼터링법으로 성장시킨 n-ZnO 박막과 n-ZnO/p-GaN 이종접합 LED의 특성)

  • Shin, Dongwhee;Byun, Changsub;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.161-167
    • /
    • 2013
  • The ZnO thin films were grown on GaN template substrates by RF magnetron sputtering at different RF powers and n-ZnO/p-GaN heterojunction LEDs were fabricated to investigate the effect of the RF power on the characteristics of the n-ZnO/p-GaN LEDs. For the growth of the ZnO thin films, the substrate temperature was kept constant at $200^{\circ}C$ and the RF power was varied within the range of 200 to 500W at different growth times to deposit films of 100 nm thick. The electrical, optical and structural properties of ZnO thin films were investigated by ellipsometry, X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) and by assessing the Hall effect. The characteristics of the n-ZnO/p-GaN LEDs were evaluated by current-voltage (I-V) and electroluminescence (EL) measurements. ZnO thin films were grown with a preferred c-axis orientation along the (0002) plane. The XRD peaks shifted to low angles and the surface roughness became non-uniform with an increase in the RF power. Also, the PL emission peak was red-shifted. The carrier density and the mobility decreased with the RF power. For the n-ZnO/p-GaN LED, the forward current at 20 V decreased and the threshold voltage increased with the RF power. The EL emission peak was observed at approximately 435 nm and the luminescence intensity decreased. Consequently, the crystallinity of the ZnO thin films grown with RF sputtering powers were improved. However, excess Zn affected the structural, electrical and optical properties of the ZnO thin films when the optimal RF power was exceeded. This excess RF power will degrade the characteristics of light emitting devices.