• Title/Summary/Keyword: Zn-superoxide dismutase

Search Result 233, Processing Time 0.034 seconds

Characterization of Antioxident Enzymes in the Lung of Rat Exposed to Cigarette Smoke (흡연한 흰쥐 폐조직 항산화효소들의 특성)

  • 이영구;손형옥;임흥빈;이동욱;박준영
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.15 no.1
    • /
    • pp.3-14
    • /
    • 1993
  • Oxidants in environment or cigarette smoke are known to be implicated in the oxidative damages of pulmonary system. Such cellular damages are prevented by the presence of adequate levels of antioxidants in the tissue. In the present study, we investigated the influences of smoking duration and concentration of smoke on lung antioxidant defense in rats. Subchronic exposure of rats to smoke generated from 6 cigarettes per day for 90 days caused the activities of catalase and superoxide dismutase (SOD) to increase. However, glutathione peroxidase (GP-Xase) was not significantly changed. Total sulfhydryl compounds (Total-SH) in the lung homogenates from the rats inhaled with cigarette smoke for 15 days was decreased by 44% , thereafter it was returned to the level of normal rats. On the contrary, when rats were daily exposed to a different concentration of smoke generated from 1 to 20 cigarettes per day for 15 days, the activity of catalase was increased gradually with dose, but total SOD activity was increased only in the rats of low dose groups less than 5 cigarettes. Three types of SOD (one Cu, Zn-SOD with pI 4.9, and two Zn-SOD with pI 4.7 and 7.9)were detected in the lung homogenates and Zn-SOD with pI 4.7 was the major and cigarette-smoke inducible form. These results indicate that the protection of lung against oxidants from cigarette smoke seems to be accomplished by the induction of catalase and SOD, especially a cyanide resistant Zn-SOD with pI 4.f, following the consumption of antioxidants such as GSH in the beginning of inhalation period.

  • PDF

Crosstalk of Zn in Combination with Other Fertilizers Underpins Interactive Effects and Induces Resistance in Tomato Plant against Early Blight Disease

  • Awan, Zoia Arshad;Shoaib, Amna;Khan, Kashif Ali
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.330-340
    • /
    • 2019
  • The present study was undertaken to evaluate the integrated effect of zinc (Zn) with other nutrients in managing early blight (EB) disease in tomato. A pot experiment was carried out with basal application of the recommended level of macronutrients [nitrogen, phosphorus and potassium (NPK)] and micronutrients [magnesium (Mg) and boron (B)] in bilateral combination with Zn (2.5 and 5.0 mg/kg) in a completely randomized deigned in replicates. Results revealed that interactive effect of Zn with Mg or B was often futile and in some cases synergistic. Zn with NPK yield synergistic outcome, therefore EB disease was managed significantly (disease incidence: 25% and percent severity index: 13%), which resulted in an efficient signaling network that reciprocally controls nutrient acquisition and uses with improved growth and development in a tomato plant. Thus, crosstalk and convergence of mechanisms in metabolic pathways resulted in induction of resistance in tomato plant against a pathogen which significantly improved photosynthetic pigment, total phenolics, total protein content and defense-related enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL)]. The tremendous increase in total phenolics and PAL activity suggesting their additive effect on salicylic acid which may help the plant to systemically induce resistance against pathogen attack. It was concluded that interactive effect of Zn (5.0 mg/kg) with NPK significantly managed EB disease and showed positive effect on growth, physiological and biochemical attributes therefor use of Zn + NPK is simple and credible efforts to combat Alternaria stress in tomato plants.

Effect of 2,4,5-Trichlorobiphenyl (PCB-29) on Oxidative Stress and Activities of Antioxidant Enzymes in Tomato Seedlings

  • Cho, Un-Haing;Sohn, Ji-Young
    • The Korean Journal of Ecology
    • /
    • v.25 no.6
    • /
    • pp.371-377
    • /
    • 2002
  • Leaves of two-week old seedlings of tomato (Lycopersicon esculentum) were treated with various concentrations (0, 0.2 and 0.4 $\mu$g/1) of 2,4,5-trichlorobiphenyl (PCB-29) and subsequent growth of seedlings, symptoms of oxidative stress and activities of antioxidant enzymes were investigated. Compared with the non-treated control, foliar application of PCB-29 decreased both biomass and superoxide ($O_2$) radical production but increased hydrogen peroxide production and lipid peroxidation such as malondialdehyde (MDA) formation with increased activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and guaiacol peroxidase (GPX). Further studies on the isozymes of SOD, peroxidase (POD) and APX showed that all three isozymes of SOD such as Mn-SOD, Fe-SOD and Cu/Zn-SOD, two among four isozymes of POD and all three isozymes of APX were selectively increased in response to PCB. Therefore, we suggest that a possible cause for the reduction of seedling growth by PCB exposure is the oxidative stress including over production of hydrogen peroxide and the selective expression of specific isozymes of some antioxidant enzymes.

Induction of antioxygenic enzymes as defense systems in plant cells against low temperature stress : (II) $Mn^{+2}-induced$ SOD activation and enhancement of cold tolerance in rice seedlings (식물의 냉해에 대한 생체방어기구로서 항산소성 효소의 유도 : (II) $Mn^{+2}$이온에 의한 세포내 SOD의 활성화와 벼 유묘의 내냉성 향상)

  • Hahn, Chang-Kyun;Kim, Jong-Pyung;Jung, Jin
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.168-173
    • /
    • 1991
  • The uptake of $Mn^{+2}$, a metal cofactor Mn-SOD, by rice seedings resulted in not only a substantial increase in SOD activity in leaf tissues of the plants, but also a significant enhancement of their cold tolerance : the relative extent of the cold tolerance appeared to accord with relative level of the SOD activity. In contrast, $Fe^{+3},\;Cu^{+2}$ and $Zn^{+2}$, which are the cofactors of Fe-SOD and Cu/Zn-SOD, were found to be ineffective for increasing the SOD activity as well as for improving the chilling-resistant capacity of the plants. The results suggest that Mn-SOD, which is most likely induced by its substrate(superoxide) and activated by the presence of $Mn^{+2}$a at high level, is the enzyme acting as an active component of the defense system against low temperature stress in rice plants. In addition, the application of abscisic acid which has been know to protect to some extent certain plants from chilling injury brought about an increase in SOD activity in rice tissues, providing another affirmative information for the crucial role of SOD under the circumstance of cold stress in plants.

  • PDF

Effect of Metals on Anti - Oxidase Activity in Persicaria vulgaris Webb. et Moq. (중금속이 봄여뀌(Persicaria vulgaris Webb. et Moq.)의 항산화효소활성에 미치는 영향)

  • Sung, Mi-Hyang;Jeong, Hyung-Jin;Kim, Kun-Woo;Kwak, Sang-Soo
    • Korean Journal of Weed Science
    • /
    • v.16 no.4
    • /
    • pp.346-353
    • /
    • 1996
  • To study the effects of metal ions on the activities of antioxidative enzymes, the activities of superoxide dismutase(SOD), peroxidase(POD), catalase(CAT) of Persicaria vulgaris has been studied after treating with Cd, Cu, Zn and Al. 1. The activities of SOD in leaf and stem were decreased, but that in root was increased. Among the metal ions studied in this report, Al gave the highest increase in SOD activity in root. 2. The activities of POD after treating with Cd or Cu did not show any significant differences. POD activities after treating with Zn and Al has been decreased, however, that in root showed increased activities after treating with Zn 5,000 ppm or Al 500 ppm. 3. The activity of CAT in leaf was decreased with every metals studied. The CAT activity in root was increased with increased concentration. The root treated with Al showed highest activity. 4. The presence of isozymes after treated metal ions has been studied in gel electrophoresis. The POD treated plant did not show any new isozymes, but the intensity of one of pre-existent band was increased. The SOD treated plant showed the several new isozymes.

  • PDF

Antioxidative Characteristics of Extracts from Aromatic Herb Elsholtzia splendens

  • Choi, Eun-Jeong;Lee, Yong-Soo;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.489-492
    • /
    • 2007
  • We investigated the antioxidant activity of ethanol extracts obtained from the flowers of Elsholtzia splendens on Chinese hamster ovary CHO-K1 cells. When cells were treated with E. splendens extracts (ESEs), low concentrations (<12.5 ug/mL) of stimulated cell proliferation via radical generation. Relative mRNA expression of Cu/Zn-superoxide dismutase (SOD) and Mn-SOD in cells exposed to ESEs (1-20 ug/mL) was significantly induced in a dose-dependent manner (p<0.05). In the case of catalase, ESEs had opposing effects; that is, a low-level treatment caused a decrease, and a high-level treatment induced elevated levels (p<0.05). The results demonstrated that components of ESEs exhibit potential antioxidant properties. Also, further studies are required to clarify the active components of Elsholtzia splendens extracts responsible for such biological activities.

Effect of Genistein on Activity and Expression of Antioxidant Enzyme in Hamster ovary cells (Genistein이 햄스터 난소세포의 항산화효소활성과 발현에 미치는 영향)

  • Kim, Min-Hye;Kim, An-Keun
    • YAKHAK HOEJI
    • /
    • v.51 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • Reactive oxygen species (ROS) are produced in the metabolic process of oxygen in cells. The superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in cells systemize the antioxidant enzymes to control the oxidative stress. Genistein is one of the isoflavonoids, and its role in controlling cellular oxidative stress is presently the active issue at question. In this study; we analyzed genistein-induced survival rates of the CHO-K1 cells, activities of antioxidant enzymes, ROS levels, and expression levels of antioxidant enzyme genes in order to investigate the effect of genistein on cellular ROS production and antioxidative systems in CHO-K1 cells. As results, the survival rate of cells was decreased as the dose of genistein increases (12.5${\sim}$200 ${\mu}$M). Genistein increased cellular ROS levels, while it reduced total SOD activities and the expression of CuZnSOD. In conclusion, we suggest that genistein may induce oxidative stress via down-regulation of SOD.