• 제목/요약/키워드: Zn-Sn

검색결과 611건 처리시간 0.035초

Zn2SnSe6 및 Zn4SnSe6:Co2+(0.5mol%) 단결정에서 열역학적 함수의 온도의존성 (Temperature dependence of thermodynamic function in Zn4SnSe6 and Zn4SnSe6:Co2+(0.5mol%) single crystals)

  • 김남오;김형곤;김덕태;송호준
    • 전기학회논문지P
    • /
    • 제52권2호
    • /
    • pp.68-73
    • /
    • 2003
  • $Zn_4SnSe_6$ and $Zn_4SnSe_6:Co^{2+}$ single crystals were grown by the chemical transport reaction(CTR) method. They were crystallized in the monoclinic structure. These temperature dependence of the optical energy gap were closely investigated over the temperature range 10[K]~300[K]. The direct energy gaps of $Zn_4SnSe_6$ and $Zn_4SnSe_6$:$Co^{2+}$ single crystals were given by 2.146[eV] and 2.042[eV] at 300[K]. The temperature dependence of the optical energy gap is well presented by the Varshni equation.

Characterization of Cu2ZnSnSe4 Thin Films Selenized with Cu2-xSe/SnSe2/ZnSe and Cu/SnSe2/ZnSe Stacks

  • Munir, Rahim;Jung, Gwang Sun;Ko, Young Min;Ahn, Byung Tae
    • 한국재료학회지
    • /
    • 제23권3호
    • /
    • pp.183-189
    • /
    • 2013
  • $Cu_2ZnSn(S,Se)_4$ material is receiving an increased amount of attention for solar cell applications as an absorber layer because it consists of inexpensive and abundant materials (Zn and Sn) instead of the expensive and rare materials (In and Ga) in $Cu(In,Ga)Se_2$ solar cells. We were able to achieve a cell conversion efficiency to 4.7% by the selenization of a stacked metal precursor with the Cu/(Zn + Sn)/Mo/glass structure. However, the selenization of the metal precursor results in large voids at the absorber/Mo interface because metals diffuse out through the top CZTSe layer. To avoid the voids at the absorber/Mo interface, binary selenide compounds of ZnSe and $SnSe_2$ were employed as a precursor instead of Zn and Sn metals. It was found that the precursor with Cu/$SnSe_2$/ZnSe stack provided a uniform film with larger grains compared to that with $Cu_2Se/SnSe_2$/ZnSe stack. Also, voids were not observed at the $Cu_2ZnSnSe_4$/Mo interface. A severe loss of Sn was observed after a high-temperature annealing process, suggesting that selenization in this case should be performed in a closed system with a uniform temperature in a $SnSe_2$ environment. However, in the experiments, Cu top-layer stack had more of an effect on reducing Sn loss compared to $Cu_2Se$ top-layer stack.

Zinc tin oxide 비정질 산화물 반도체 박막에 대한 Ga 도핑 영향

  • 김혜리;김동호;이건환;송풍근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.198-198
    • /
    • 2010
  • 산화물 반도체는 넓은 밴드갭을 가지고 있어 가시광에서 투명하며 높은 이동도로 디스플레이 구동 회로 집적에 유리하다. 또한 가격 및 공정 측면에서도 기존의 Si 기판 소자에 비해 여러 장점을 가지고 있어 차세대 디스플레이의 핵심 기술로 산화물반도체에 대한 관심이 높아지고 있다. 본 연구는 RF 동시 스퍼터링법을 이용하여 Zn-Sn-O 박막을 제조하고, 그 전기적, 광학적, 구조적 특성에 대해 조사하였다. 일정한 증착 온도($100^{\circ}C$)에서 ZnO와 $SnO_2$ 타켓의 인가 파워를 조절하여 Sn/(Zn+Sn) 성분비가 약 40~85%인 Zn-Sn-O 박막을 제조하였다. Sn 함량이 증가할수록 박막의 비저항은 약 $2{\times}10^{-1}$ (Sn 45%)에서 약 $2\;{\times}\;10^{-2}\;{\Omega}{\cdot}cm$ (Sn 67%)까지 감소하다가 다시 증가하는 경향을 보였다. 이 때 캐리어 농도는 $3\;{\times}\;10^{18}$에서 $4\;{\times}\;10^{19}\;cm^{-3}$으로 증가하였으며, 이동도는 11에서 $8\;cm^2/V{\cdot}s$로 약간 감소하였다. XRD분석결과, 제조된 모든 Zn-Sn-O 박막은 비정질 구조를 가짐을 확인하였다. 투과율은 박막 내 Sn함량 증가에 따라 감소하나 모든 시편이 약 70%이상의 투과도를 나타내었다. Zn-Sn-O 박막의 Ga 도핑 영향을 확인하기 위해 ZnO 타켓 대신 갈륨이 5.7 wt.% 도핑된 GZO 타켓을 사용하여 동일한 공정조건에서 박막을 제조하였다. Ga이 첨가된 Zn-Sn-O 박막은 구조적 특성과 광학적 특성에서는 큰 차이를 보이지 않았으나, 전기적 특성의 뚜렷한 변화가 관찰되었다. Sn 함량이 45%인 Zn-Sn-O 박막의 경우, 캐리어 농도가 $3.1\;{\times}\;10^{18}$에서 Ga 도핑 효과로 인해 $1.7\;{\times}\;10^{17}\;cm^{-3}$으로 크게 감소하고 이동도는 11에서 $20\;cm^2/V{\cdot}s$로 증가하였다. 따라서 본 연구는 Zn-Sn-O 비정질 박막에 Ga을 도핑함으로써 산화물 반도체재료로서 요구되는 물성을 만족시킬 수 있다는 가능성을 제시하였다.

  • PDF

Sn-Zn합금의 주조조건과 응고특성 (Casting Conditions and Solidification Characteristics of Sn-Zn Alloys)

  • 송태석;김명한;조형호;지태구
    • 한국주조공학회지
    • /
    • 제18권6호
    • /
    • pp.570-577
    • /
    • 1998
  • An investigation has been conducted to describe solidification characteristics in Sn-Zn binary system and Sn-Zn-Ag ternary system added by Ag produced by the continuous casting process using heated mold as a basic study for developing Pb-free solder materials. To obtain the continuous casting rods with mirror surface and near net shape at higher casting speed, water flow rates must be increased and mold temperature must be lowered. However, surface tearing in the casting rods occured at lower continuous casting speed while break out occured at higher continuous casting speed even if optimum conditions such as water flow rate and heated mold temperature are determined. Primary ${\alpha}Sn$ and eutectic structure in unidirectioally solidified Sn-Zn alloys were finer with increased casting speed. But, directionality may not be expected for primary Zn in hypereutectic Sn-Zn alloy. It was found that the addition of $0.2{\sim}0.8%$ Ag promoted the growth of primary ${\alpha}Sn$ dendrites. The changes of tensile strength and elongation in Sn-Zn binary alloys were not observed while the increase of tensile strength and the decrease of elongation in Sn-Zn-Ag ternary alloys were observed with increased casting speed.

  • PDF

High-Performance Amorphous Multilayered ZnO-SnO2 Heterostructure Thin-Film Transistors: Fabrication and Characteristics

  • Lee, Su-Jae;Hwang, Chi-Sun;Pi, Jae-Eun;Yang, Jong-Heon;Byun, Chun-Won;Chu, Hye Yong;Cho, Kyoung-Ik;Cho, Sung Haeng
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1135-1142
    • /
    • 2015
  • Multilayered ZnO-$SnO_2$ heterostructure thin films consisting of ZnO and $SnO_2$ layers are produced by alternating the pulsed laser ablation of ZnO and $SnO_2$ targets, and their structural and field-effect electronic transport properties are investigated as a function of the thickness of the ZnO and $SnO_2$ layers. The performance parameters of amorphous multilayered ZnO-$SnO_2$ heterostructure thin-film transistors (TFTs) are highly dependent on the thickness of the ZnO and $SnO_2$ layers. A highest electron mobility of $43cm^2/V{\cdot}s$, a low subthreshold swing of a 0.22 V/dec, a threshold voltage of 1 V, and a high drain current on-to-off ratio of $10^{10}$ are obtained for the amorphous multilayered ZnO(1.5nm)-$SnO_2$(1.5 nm) heterostructure TFTs, which is adequate for the operation of next-generation microelectronic devices. These results are presumed to be due to the unique electronic structure of amorphous multilayered ZnO-$SnO_2$ heterostructure film consisting of ZnO, $SnO_2$, and ZnO-$SnO_2$ interface layers.

Determination of Ascorbic Acid, Acetaminophen, and Caffeine in Urine, Blood Serum by Electrochemical Sensor Based on ZnO-Zn2SnO4-SnO2 Nanocomposite and Graphene

  • Nikpanje, Elham;Bahmaei, Manochehr;Sharif, Amirabdolah Mehrdad
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권2호
    • /
    • pp.173-187
    • /
    • 2021
  • In the present research, a simple electrochemical sensor based on a carbon paste electrode (CPE) modified with ZnO-Zn2SnO4-SnO2 and graphene (ZnO-Zn2SnO4-SnO2/Gr/CPE) was developed for the direct, simultaneous and individual electrochemical measurement of Acetaminophen (AC), Caffeine (Caf) and Ascorbic acid (AA). The synthesized nano-materials were investigated using scanning electron microscopy, X-ray Diffraction, Fourier-transform infrared spectroscopy, and electrochemical impedance spectroscopy techniques. Cyclic voltammetry and differential pulse voltammetry were applied for electrochemical investigation ZnO-Zn2SnO4-SnO2/Gr/CPE, and the impact of scan rate and the concentration of H+ on the electrode's responses were investigated. The voltammograms showed a linear relationship between the response of the electrode for individual oxidation of AA, AC and, Caf in the range of 0.021-120, 0.018-85.3, and 0.02-97.51 μM with the detection limit of 8.94, 6.66 and 7.09 nM (S/N = 3), respectively. Also, the amperometric technique was applied for the measuring of the target molecules in the range of 0.013-16, 0.008-12 and, 0.01-14 μM for AA, AC and, Caf with the detection limit of 6.28, 3.64 and 3.85 nM, respectively. Besides, the ZnO-Zn2SnO4-SnO2/Gr/CPE shows an excellent selectivity, stability, repeatability, and reproducibility for the determination of AA, AC and, Caf. Finally, the proposed sensor was successfully used to show the amount of AA, AC and, Caf in urine, blood serum samples with recoveries ranging between 95.8% and 104.06%.

ZnO, SnO2, ZTO 산화물반도체의 전기적인 특성 분석 (Analysis of Electrical Characteristics of Oxide Semiconductor of ZnO, SnO2 and ZTO)

  • 오데레사
    • 한국재료학회지
    • /
    • 제25권7호
    • /
    • pp.347-351
    • /
    • 2015
  • To study the characteristics of ZTO, which is made using a target mixed $ZnO:SnO_2=1:1$, the ZnO and $SnO_2$ were analyzed using PL, XRD patterns, and electrical properties. Resulting characteristics were compared with the electrical characteristics of ZnO, $SnO_2$, and ZTO. The electrical characteristics of ZTO were found to improve with increasing of the annealing temperature due to the high degree of crystal structures at high temperature. The crystal structure of $SnO_2$ was also found to increase with increasing temperatures. So, the structure of ZTO was found to be affected by the annealing temperature and the molecules of $SnO_2$; the optical property of ZTO was similar to that of ZnO. Among the ZTO films, ZTO annealed at the highest temperature showed the highest capacitance and Schottky contact.

$ZnO-Fe_2O_3-TiO_2-SnO_2$계 Spinel 안료 고용체의 생성과 발색 (Formation and Color of the Spinel Solid-Solution in $ZnO-Fe_2O_3-TiO_2-SnO_2$ System)

  • 박철원;이진성;이웅재
    • 한국세라믹학회지
    • /
    • 제31권2호
    • /
    • pp.213-219
    • /
    • 1994
  • The formations of spinel and colors of ZnO-Fe2O3-TiO2-SnO2 system have been researched on the basis of ZnO-Fe2O3 system. Specimens were prepared by substituting Fe3+, with Ti4+ or Sn4+ when mole ratios between Fe3+ and Ti4+ or between Fe3+ and Sn4+ were 0.2 mole. The reflectance measurement and X-ray diffraction analysis of the formation of spinel and the colors of there specimens were carried out. ZnO-Fe2O3 system in which Fe2O3 was substituted with SnO2 and TiO2 was formed the spinel structure of 2ZnO.TiO2, 2ZnO.SnO2, ZnO.Fe2O3. The stable stains which were colored with yellow and brown could be manufactured.

  • PDF

$SnO_2$ 코팅에 의한 저전압형 ZnS계 형광체의 합성조건 (Synthesis of ZnS Phosphors for Low Voltage by $SnO_2$ Coating)

  • 김강덕;강승구;김영진;이기강;김정환;정영호;박용구;한정인;조경익
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1997년도 Proceedings of the 13th KACG Technical Meeting `97 Industrial Crystallization Symposium(ICS)-Doosan Resort, Chunchon, October 30-31, 1997
    • /
    • pp.165-172
    • /
    • 1997
  • CRT용 고전압 형광체인 ZnS를 저전압용에 적용하기 위해 ZnS 분말표면에 졸-겔법으로 SnO$_2$코팅조건을 연구하였다. Sn의 코팅량은 Sn/ZnS=0.02~0.07 범위에서 변화시켰으며, 코팅된 ZnS분말의 열처리는 450~90$0^{\circ}C$/2hr 범위에서 수행하였다. Sn/ZnS=0.035일 때 최적의 코팅이 이루어졌으며, 과도한 열처리는 ZnS에서 ZnO로 상전이가 발생하므로 500~$600^{\circ}C$ 정도가 안전한 조건임이 규명되었다. Sn량이 증가할수록 코팅된 ZnS의 형광강도는 감소하였으나 저전압 형광특성은 향상될 수 있는 가능성을 보여주었다.

  • PDF