• Title/Summary/Keyword: Zirconia Ceramic

Search Result 626, Processing Time 0.027 seconds

Effect of Template Size Ratio on Porosity and Strength of Porous Zirconia Ceramics (기공형성제 크기 비(ratio)가 다공질 지르코니아 세라믹스의 기공율과 강도에 미치는 영향)

  • Chae, Su-Ho;Kim, Young-Wook;Song, In-Hyuek;Kim, Hai-Doo;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.537-543
    • /
    • 2008
  • Effect of template size ratio on porosity and mechanical properties of porous zirconia ceramics were investigated using two different size (${\sim}8{\mu}m$ and ${\sim}50{\mu}m$ in diameter) of polymethyl methacrylate-coethylene glycol dimethacrylate (PMMA) microbeads as sacrificial templates. Porosity of the porous zirconia ceramics increased with decreasing the template size ratio ($8{\mu}m: 50{\mu}m$) whereas the compressive and flexural strengths of the porous zirconia ceramics increased with increasing the template size ratio. By controlling the template size ratio, sintering temperature and sintering time, it was possible to produce porous zirconia ceramics with porosities ranging from 57% to 69%. Typical flexural and compressive strength values of porous zirconia ceramics with ${\sim}60%$ porosity were ${\sim}37\;MPa$ and ${\sim}85\;MPa$, respectively.

Effect of Conditioning Methods on the Shear Bond Strength of Veneering composite on Zirconia Ceramic (Y-TZP ceramic의 표면처리에 따른 전장용 레진의 전단결합강도)

  • Nam, Hyun-Seok;Song, Kwang-Yeob;Ahn, Seung-Geun;Park, Ju-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.3
    • /
    • pp.253-264
    • /
    • 2010
  • The purpose of this study is to know whether Yttrium-stabilized-tetragonal -zirconia-polycrystal(Y-TZP ceramic) gets enough shear bond strength for clinical uses by applying veneering composite resin through surface treatment on it and finally to compare it with the case of applying veneering porcelain. LavaTM zirconia frameworks(3M ESPE, Seefeld, Germany) were prepared. Group P was manufactured with LavaTM Ceram(3M ESPE, Seefeld, Germany) in cylindrical shape which has 4mm diameter, 5mm height. Group ZSR disposed sandblasting and applied silane, bonding agent and after that indirect composite resin was applied. Group ZRR got tribochemical coating by RocatecTM system(3M ESPE. Seefeld, Germany) and treated silane. Finally Group ZPR took the same treatment and applied LavaTM Ceram in the size of 0.3-0.5mm height. After burning out, sandblasting, HF and silane was applied. And then, indirect composite resin was applied. 1000 cycle thermocycling was performed in $5-55^{\circ}C$ and shear bond strength was measured. There were no significant differences between combining veneering porcelain to Y-TZP ceramic group and combining veneering resin to Y-TZP ceramic group in the aspect of shear bond strength (p>.05).

The Properties of Sintered Body by Using the Slip Casting Process with Remained Dental Zirconia Block after Machining (치과용 지르코니아 코어 가공후의 잔여물을 활용하여 주입성형법으로 제조한 소결체의 특성)

  • Kim, Sang-Su;Lee, Dong-Yoon;Seo, Jeong-Il;Bae, Won-Tae
    • Journal of Technologic Dentistry
    • /
    • v.34 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • Purpose: All ceramic crown, made from zirconia instead of metal for core material, is recognized the best esthetical prosthesis. Recently, high-priced zirconia blocks and expensive CAD/CAM machines come into use for making zirconia core. In this study, slip casting process is adapted to evaluate the possibility of the recycling the remained parts of zirconia block after machining. Methods: Remained zirconia blocks were reduced to powders with zirconia mortar, and screened with 180 mesh sieve. Passed powders were ball milled under various conditions to obtain the optimum zirconia slip for casting. Solid casting method was used for casting the specimens with plaster mold. Formed specimens were dried and biscuit fired at $1,000^{\circ}C$ for 1 hour. Biscuit fired specimens were finished with exact shape of square pillar. Finished specimens were fired from $1,200^{\circ}C$ to $1,550^{\circ}C$ at $50^{\circ}C$ intervals for 1 hour. Linear shrinkage, apparent porosity, water absorption, bulk density, and flexural strength were tested. Microstructures were observed by SEM. Results: Above examinations indicated that the optimum firing temperture was $1,500^{\circ}C$, and when fired at this temperature for 1 hour, apparent porosity was 0% and flexural strength was 680MPa. SEM photomicrographs showed uniform 200~300nm grain size, which is equal with microcture of sintered commercial zirconia block. when compare 24% linear shrinkage of cast specimen with 20% linear shrinkage of CAD/CAM machined block, it was estimated that the size controlling of cast core was not so difficult. Conclusion: According to the all of this experimental results, the cast zirconia core produced from the remained parts of zirconia block was possible to use for all ceramic denture.

Shear bond strength of veneering porcelain to zirconia and metal cores

  • Choi, Bu-Kyung;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jai-Bong;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.3
    • /
    • pp.129-135
    • /
    • 2009
  • STATEMENT OF PROBLEM. Zirconia-based restorations have the common technical complication of delamination, or porcelain chipping, from the zirconia core. Thus the shear bond strength between the zirconia core and the veneering porcelain requires investigation in order to facilitate the material's clinical use. PURPOSE. The purpose of this study was to evaluate the bonding strength of the porcelain veneer to the zirconia core and to other various metal alloys (high noble metal alloy and base metal alloy). MATERIAL AND METHODS. 15 rectangular ($4\times4\times9mm$) specimens each of zirconia (Cercon), base metal alloy (Tillite), high noble metal alloy (Degudent H) were fabricated for the shear bond strength test. The veneering porcelain recommended by the manufacturer for each type of material was fired to the core in thickness of 3mm. After firing, the specimens were embedded in the PTFE mold, placed on a mounting jig, and subjected to shear force in a universal testing machine. Load was applied at a crosshead speed of 0.5mm/min until fracture. The average shear strength (MPa) was analyzed with the oneway ANOVA and the Tukey's test ($\alpha$= .05). The fractured specimens were examined using SEM and EDX to determine the failure pattern. RESULTS. The mean shear strength ($\pm\;SD$) in MPa was 25.43 ($\pm\;3.12$) in the zirconia group, 35.87 ($\pm\;4.23$) in the base metal group, 38.00 ($\pm\;5.23$) in the high noble metal group. The ANOVA showed a significant difference among groups, and the Tukey' s test presented a significant difference between the zirconia group and the metal group. Microscopic examination showed that the failure primarily occurred near the interface with the residual veneering porcelain remaining on the core. CONCLUSION. There was a significant difference between the metal ceramic and zirconia ceramic group in shear bond strength. There was no significant difference between the base metal alloy and the high noble metal alloy.

SPECTROPHOTOMETRIC ANALYSIS OF THE INFLUENCE OF ZIRCONIA CORE ON THE COLOR OF CERAMIC (지르코니아 코아가 전부도재관의 색조에 미치는 영향에 대한 분광측색분석)

  • Pae Ah-Ran;Baik Jin;Woo Yi-Hyung;Kim Hyung-Sup;Choi Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.466-477
    • /
    • 2005
  • Statement of problem : Problem of matching the appearance of porcelain restorations with the patient's natural dentition has always been a concern to dental clinicians. Recently, demands for esthetics, even in restorations requiring strength, has brought a revolution to dentistry and increased use of zirconia. Among the various factors, shade and translucency or the core can significantly affect the overall esthetics of the restoration and should be considered when selecting an all-ceramic system. Purpose : The purpose of this study was to spectrophotometrically evaluate the influence of different zirconia systems and core thickness on the final shade of all-ceramic restorations using the CIEL$^*a^*b^*$ system. Material and Methods: Core specimens (n : 20 per group) of In-Ceram Alumina, In-Ceram Zirconia, Digident CAD/CAM Zirconia, Cercon Zirconia were fabricated 20mm in diameter. 10 specimens of each group were fabricated at core thickness of 0.5mm and 0.7mm. These core specimens were veneered with shade Al & A3 porcelain of the recommended manufacturer. CIEL$^*a^*b^*$ coordinates were recorded for each specimen with a spectrophotometer (Model CM-2600d, Minolta, Japan). Color differences were calculated using the equation ${\Delta}E^*=[({\Delta}L^*)^2+({\Delta}a^*)^2+({\Delta}b^*)^2]^{\frac{1}{2}}$. Results : 1. Specimens of core thickness 0.5mm and 0.7mm did not exhibit clinically perceived color difference. 2. Regarding shade reproducibility, In-Ceram Alumina and In-Ceram Zirconia showed significant difference within each group. 3. Cercon Zirconia group showed the highest $L^*$ value and Digident Zirconia group showed lowest $a^*$ & $b^*$ value. 4. Generally the shade difference between materials was higher in the A3 shade group than in the Al shade group. Conclusion: Within the limitations of this study, there was no color difference after increase in core thickness and every all-ceramic system has color characteristics that clinicians have to consider when selecting materials. Also, manufacturers of different porcelain systems must make every effort to achieve color reproducibility.

FRACTURE STRENGTH AND FRACTURE MODE OF RESIN ROOT ANALOGS RESTORED WITH VARIOUS POST AND CORE MATERIALS

  • Lee, Byung-Chul;Han, Jung-Suk;Lee, Jai-Bong;Yang, Jae-Ho;Lee, Sun-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.3
    • /
    • pp.287-295
    • /
    • 2002
  • Statement of Problem. Endodontically treated teeth frequently required posts and cores to provide retention and resistance form for crowns. In spite of excellent mechanical properties of metal post and core, its metallic color can be detected through all ceramic restorations occasionally. To solve esthetic problems of metal post and core zirconia post system has been introduced recently. Purpose. The purpose of this study was to examine the fracture strength and mode of resin root analogs restored with zirconia, gold and titanium posts with resin, ceramic and metal cores after cementation with metal crowns. Materials and methods. To avoid the morphological variations of natural teeth, 40 root analogs were fabricated with composite resin. Forty resin root analogs were randomly assigned to four groups according to post and core materials: Group A: cast gold post and core and complete cast crowns, as control. Group B: titanium posts (Parapost, Coltent/Whaledent Inc., NJ, USA) and composite resin cores. Group C: zirconia posts (Cosmopost, Ivoclar AG, Schaan/Liechtenstein) and composite resin cores Group D: zirconia posts and heat-pressed ceramic cores (IPS Empress Cosmo Ingots, Ivoclar AG) After thermocycling ($5^{\circ}C{\sim}55^{\circ}C$, 30 sec.), cyclic loading was applied at 3mm below the incisal edge on the palatal surfaces at an angle of 135 degree to the long axis (2Hz, 50N, 50000cycles). Fracture strength was measured by universal testing machine (Instron, High Wycombe, UK) and fracture pattern of restored resin root analogs was also evaluated. Results and conclusion. Within the limitations of this study following results were drawn. 1. Resin root analogs restored with zirconia posts and composite resins demonstrated lowest fracture strength among tested groups. 2. There was no significant difference in the fracture strength between zirconia posts and heat pressed glass ceramic cores and cast gold posts and cores 3. The fracture strength of resin root analogs restored with titanium posts and composite resin cores was lower than that of gold posts and cores. 4. The deep oblique fracture lines were dominantly observed in root analogs restored with cast gold post and core and zirconia post and heat-pressed ceramic core groups.

Fracture resistance of implant- supported monolithic crowns cemented to zirconia hybrid-abutments: zirconia-based crowns vs. lithium disilicate crowns

  • Elshiyab, Shareen H;Nawafleh, Noor;Ochsner, Andreas;George, Roy
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2018
  • PURPOSE. The aim of this in vitro study was to investigate the fracture resistance under chewing simulation of implant-supported posterior restorations (crowns cemented to hybrid-abutments) made of different all-ceramic materials. MATERIALS AND METHODS. Monolithic zirconia (MZr) and monolithic lithium disilicate (MLD) crowns for mandibular first molar were fabricated using computer-aided design/computer-aided manufacturing technology and then cemented to zirconia hybrid-abutments (Ti-based). Each group was divided into two subgroups (n=10): (A) control group, crowns were subjected to single load to fracture; (B) test group, crowns underwent chewing simulation using multiple loads for 1.2 million cycles at 1.2 Hz with simultaneous thermocycling between $5^{\circ}C$ and $55^{\circ}C$. Data was statistically analyzed with one-way ANOVA and a Post-Hoc test. RESULTS. All tested crowns survived chewing simulation resulting in 100% survival rate. However, wear facets were observed on all the crowns at the occlusal contact point. Fracture load of monolithic lithium disilicate crowns was statistically significantly lower than that of monolithic zirconia crowns. Also, fracture load was significantly reduced in both of the all-ceramic materials after exposure to chewing simulation and thermocycling. Crowns of all test groups exhibited cohesive fracture within the monolithic crown structure only, and no abutment fractures or screw loosening were observed. CONCLUSION. When supported by implants, monolithic zirconia restorations cemented to hybrid abutments withstand masticatory forces. Also, fatigue loading accompanied by simultaneous thermocycling significantly reduces the strength of both of the all-ceramic materials. Moreover, further research is needed to define potentials, limits, and long-term serviceability of the materials and hybrid abutments.

Material properties and clinical application of zirconia-reinforced lithium silicate ceramics (지르코니아 강화 리튬 실리케이트 세라믹의 특성과 임상적용)

  • Kim, Jong-Eun;Kim, Jee-Hwan;Shim, June-Sung;Park, Young-Bum
    • The Journal of the Korean dental association
    • /
    • v.56 no.3
    • /
    • pp.159-166
    • /
    • 2018
  • The zirconia-reinforced lithium silicate ceramic material is a material in which lithium silicate glass contains about 10% by weight of zirconia oxide (zirconia oxide). This material has both the advantages of glass ceramics and zirconia, and it is attracting attention as a CADCAM material for single tooth restoration. ZLS materials have improved strength compared to widely used e.max (lithium disilicate ceramic) materials. It can be used for single crown restoration and ensuring a thickness of 1.5 mm is very important for reliable treatment. In the case of Celtra Duo, heat treatment may be helpful in terms of strength and abrasion resistance. Hydrofluoric acid treatment is helpful for bonding and hydrofluoric acid for a short time may not help to improve the bonding strength. Although zirconia-reinforced lithium silicate ceramic materials have been continuously conducted and published in the laboratory, reliable clinical studies are still lacking. Additional clinical studies will be a very important part of establishing a scientific basis.

  • PDF

A Study on the Fracture Strength of All-Ceramic Crown according to the Zirconia Coping Design using CAD/CAM System (CAD/CAM을 이용하여 제작한 전부도재관의 지르코니아 코핑 디자인에 따른 파절강도에 관한 연구)

  • Bulgan, L.;Cho, In-Ho;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.111-123
    • /
    • 2006
  • A Study on the Fracture Strength of All-Ceramic Crown according to the Zirconia Coping Design using CAD/CAM System L. Bulgan, In-Ho Cho, Soo-Yeon Shin Department of Prosthodontics, Graduate School, Dankook University The fracture strength of prosthesis is important, because it affects the function, and long term success of prosthesis and teeth. The purpose of this study was to compare the fracture strength of zirconia coping designs. Experimental test group were classified into three designs according to coping design, Modified design: Zirconia coping margin was located at 1mm above the axiogingival line angle. Collarless design: The coping margin terminated at the axiogingival line angle Butt design: The coping margin was extended to the finishing line of prepared margin. A $Cercon^{(R)}$(Degussa, Germany) CAD/CAM system was used to make the zirconia coping. Fracture strength was measured using loading machine at a cross head speed of 1mm/min. The results were statistically analyzed using the one-way ANOVA and multiple comparison test. Statistical significance was set in advance at the probability level of less than 0.05. The result : I. Collarless($738N{\pm}155N$) and Modified($755N{\pm}185N$) groups showed significantly a lower fracture strength than Butt($1057N{\pm}262N$) group(p<0.05). II. There were no statistical differences of the fracture strength between Modified($755N{\pm}185N$) and Collarless($738N{\pm}155N$) groups. III. When comparing the fractured surface, all the group showed porcelain fracture, which were fractured at the labial surface of baked porcelain The butt design of the zirconia coping has higher fracture strength than modified and collarless design.

Ceramic molar crown reproducibility by digital workflow manufacturing: An in vitro study

  • Jeong, II-Do;Kim, Woong-Chul;Park, Jinyoung;Kim, Chong-Myeong;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.252-256
    • /
    • 2017
  • PURPOSE. This in vitro study aimed to analyze and compare the reproducibility of zirconia and lithium disilicate crowns manufactured by digital workflow. MATERIALS AND METHODS. A typodont model with a prepped upper first molar was set in a phantom head, and a digital impression was obtained with a video intraoral scanner (CEREC Omnicam; Sirona GmbH), from which a single crown was designed and manufactured with CAD/CAM into a zirconia crown and lithium disilicate crown (n=12). Reproducibility of each crown was quantitatively retrieved by superimposing the digitized data of the crown in 3D inspection software, and differences were graphically mapped in color. Areas with large differences were analyzed with digital microscopy. Mean quadratic deviations (RMS) quantitatively obtained from each ceramic group were statistically analyzed with Student's t-test (${\alpha}=.05$). RESULTS. The RMS value of lithium disilicate crown was $29.2\;(4.1){\mu}m$ and $17.6\;(5.5){\mu}m$ on the outer and inner surfaces, respectively, whereas these values were $18.6\;(2.0){\mu}m$ and $20.6\;(5.1){\mu}m$ for the zirconia crown. Reproducibility of zirconia and lithium disilicate crowns had a statistically significant difference only on the outer surface (P<.001). The outer surface of lithium disilicate crown showed over-contouring on the buccal surface and under-contouring on the inner occlusal surface. The outer surface of zirconia crown showed both over- and under-contouring on the buccal surface, and the inner surface showed under-contouring in the marginal areas. CONCLUSION. Restoration manufacturing by digital workflow will enhance the reproducibility of zirconia single crowns more than that of lithium disilicate single crowns.