• Title/Summary/Keyword: Zinc oxide(ZnO)

Search Result 779, Processing Time 0.032 seconds

Synthesis of ZnO nanoparticles and their photocatalytic activity under UV light

  • Nam, Sang-Hun;Kim, Myeong-Hwa;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.423-423
    • /
    • 2011
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation (REDOX) reaction will occur on the ZnO surface and generate O2- and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into CO2 and H2O. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with TiO2. Zn(OH)2 was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

Synthesis of functional ZnO nanoparticles and their photocatalytic properties

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Kim, Min-Hee;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.54-54
    • /
    • 2010
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation(REDOX) reaction will occur on the ZnO surface and generate ${O_2}^-$ and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into $CO_2$ and $H_2O$. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with $TiO_2$. $Zn(OH)_2$ was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

Effect of Particle Size of Zinc Oxides on Cytotoxicity and Cell Permeability in Caco-2 Cells

  • Chang, Hyun-Joo;Choi, Sung-Wook;Ko, Sang-Hoon;Chun, Hyang-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.2
    • /
    • pp.174-178
    • /
    • 2011
  • The cell permeability and cytotoxic effects of different-sized zinc oxide (ZnO) particles were investigated using a human colorectal adenocarcinoma cell line called Caco-2. Morphological observation by scanning electron microscopy revealed that three zinc oxides with different mean particle sizes (ZnO-1, 20 nm; ZnO-2, 90~200 nm; ZnO-3, $1\sim5\;{\mu}m$) tended to aggregate, particularly in the case of ZnO-1. When cytotoxicities of all three sizes of zinc oxide particles were measured at concentration ranges of $1\sim1000\;{\mu}g$/mL, significant decreases in cell viability were observed at concentrations of $50\;{\mu}g$/mL and higher. Among the three zinc oxides, ZnO-1 showed the lowest viability at $50\;{\mu}g$/mL in Caco-2 cells, followed by ZnO-2 and ZnO-3. The permeate concentration of ZnO-1 from the apical to the basolateral side in the Caco-2 model system after four hours was about three-fold higher than that of either ZnO-2 or ZnO-3. These results demonstrated that ZnO-1, with a 20 nm mean particle size, had poorer viability and better permeability in Caco-2 cells than ZnO-2 and ZnO-3.

Prevention of Citrobacter freundii (MW279218) infection in Nile tilapia, Oreochromis niloticus using zinc oxide nanoparticles

  • Korni, Fatma M. M.;Moawad, Usama K.;Mohammed, Asmaa N.;Edrees, Asmaa
    • Journal of fish pathology
    • /
    • v.35 no.1
    • /
    • pp.77-92
    • /
    • 2022
  • Aquaculture development is based on the ideas of increasing production while reducing economic losses. Bacterial diseases are the leading source of fish cases. Citrobacter freundii has been linked to septicemia and mortality all over the world. In the current study, the cause of mortality in O. niloticus was C. freundii MW279218. External hemorrhages were seen on the affected fish, as well as paleness in the liver and kidney congestion. C. freundii MW279218 had a median lethal dosage of 1.5×105 CFU/mL. Zinc oxide and zinc oxide nanoparticles (ZnO-NPs) were tested for their biocidal effectiveness against C. freundii MW279218. The lethal effect of ZnO-NPs for C. freundii MW279218 was 100% when compared to zinc oxide compound, and the inhibition zone width was 2.31.1mm at the highest tested concentrations (70 mg/L) compared to the lowest (35 and 45 mg/L, respectively). Fish were fed three different diets for 28 days: diet 1 (no additives), diet 2 (100 mg of ZnO-NPs/kg of feed), and diet 3 (200 mg of ZnO-NPs/kg of feed). Organs were also collected for histopathology 96 hours after injection (P<0.05). In the groups given 200 mg of ZnO-NPs, there was 10% mortality and 80% RPS. The group fed 100 mg of ZnO-NPs/kg, on the other hand, had 20% mortality and 60% RPS, compared to 50% mortality in the control positive group. Histopathological examinations demonstrated significant alterations in the control positive group and mild lesions in the hepatopancreas of the groups administered 100 mg ZnO-NPs/kg of feed. The groups fed 200 mg of ZnO-NPs/kg diet, on the other hand, showed no histological alterations. ZnO-NPs were found to be effective in the up regulation of both IL-10 and complement 5 immune-related genes.

Dependence of the Heterojunction Diode Characteristics of ZnO/ZnO/p-Si(111) on the Buffer Layer Thickness (버퍼막 두께에 따른 ZnO/ZnO/p-Si(111) 이종접합 다이오드 특성 평가)

  • Heo, Joo-Hoe;Ryu, Hyuk-Hyun;Lee, Jong-Hoon
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.34-38
    • /
    • 2011
  • In this study, the effects of an annealed buffer layer with different thickness on heterojunction diodes based on the ZnO/ZnO/p-Si(111) systems were reported. The effects of an annealed buffer layer with different thickness on the structural, optical, and electrical properties of zinc oxide (ZnO) films on p-Si(111) were also studied. Before zinc oxide (ZnO) deposition, different thicknesses of ZnO buffer layer, 10 nm, 30 nm, 50 nm and 70 nm, were grown on p-Si(111) substrates using a radio-frequency sputtering system; samples were subsequently annealed at $700^{\circ}C$ for 10 minutes in $N_2$ in a horizontal thermal furnace. Zinc oxide (ZnO) films with a width of 280nm were also deposited using a radio-frequency sputtering system on the annealed ZnO/p-Si (111) substrates at room temperature; samples were subsequently annealed at $700^{\circ}C$ for 30 minutes in $N_2$. In this experiment, the structural and optical properties of ZnO thin films were studied by XRD (X-ray diffraction), and room temperature PL (photoluminescence) measurements, respectively. Current-voltage (I-V) characteristics were measured with a semiconductor parameter analyzer. The thermal tensile stress was found to decrease with increasing buffer layer thickness. Among the ZnO/ZnO/p-Si(111) diodes fabricated in this study, the sample that was formed with the condition of a 50 nm thick ZnO buffer layer showed a strong c-axis preferred orientation and I-V characteristics suitable for a heterojunction diode.

Preparation and Performance Evaluation of a Zinc Oxide-Graphene Oxideloaded Chitosan-Based Thermosensitive Gel

  • Hao Huang;Rui Han;Ping-Ping Huang;Chuan-Yue Qiao;Shuang Bian;Han Xiao;Lei Ma
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1229-1238
    • /
    • 2024
  • This study aimed to develop and assess a chitosan biomedical antibacterial gel ZincOxide-GrapheneOxide/Chitosan/β-Glycerophosphate (ZnO-GO/CS/β-GP) loaded with nano-zinc oxide (ZnO) and graphene oxide (GO), known for its potent antibacterial properties, biocompatibility, and sustained drug release. ZnO nanoparticles (ZnO-NPs) were modified and integrated with GO sheets to create 1% and 3% ZnO-GO/CS/β-GP thermo-sensitive hydrogels based on ZnO-GO to Chitosan (CS) mass ratio. Gelation time, pH, structural changes, and microscopic morphology were evaluated. The hydrogel's antibacterial efficacy against Porphyromonas gingivalis, biofilm biomass, and metabolic activity was examined alongside its impact (MC3T3-e1). The findings of this study revealed that both hydrogel formulations exhibited temperature sensitivity, maintaining a neutral pH. The ZnO-GO/CS/β-GP formulation effectively inhibited P. gingivalis bacterial activity and biofilm formation, with a 3% ZnO-GO/CS/β-GP antibacterial rate approaching 100%. MC3T3-e1 cells displayed good biocompatibility when cultured in the hydrogel extract.The ZnO-GO/CS/β-GP thermo-sensitive hydrogel demonstrates favorable physical and chemical properties, effectively preventing P. gingivalis biofilm formation. It exhibits promising biocompatibility, suggesting its potential as an adjuvant therapy for managing and preventing peri-implantitis, subject to further clinical investigations.

Effect of ethylene glycol on the nano-sized ZnO nanoparticles using polyol process (폴리올 공정을 이용한 에틸렌 글리콜이 나노 크기의 산화아연 나노입자에 미치는 영향)

  • Dae-Hwan Jang;Bo-Ram Kim;Dae-Weon Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.4
    • /
    • pp.117-124
    • /
    • 2024
  • Zinc oxide nanoparticles were synthesized using the polyol method with ethylene glycol containing hydroxyl groups (-OH). It was confirmed that the zinc compounds prepared by the polyol method were a mixture of zinc carbonate hydroxide (Zn5(OH)6(CO3)2) and zinc oxide (ZnO) crystalline structures. Calcination at 400℃, 600℃ and 800℃ was performed to examine the effects of calcination temperature on the particle size, morphology and crystallinity of zinc oxide. ZnO powders of calcination at 800 ℃ was evaluated to particle size analysis from ethylene glycol containing precursor solution compared with distilled water based solution. The zinc oxide particles obtained from the former had a particle size of approximately 404 ± 51 nm, whereas those from the latter exhibited a more uniform nanoparticles morphology with a particle size of approximately 109 ± 29 nm. This demonstrates that the addition of ethylene glycol can control the influence of water molecules, enabling the direct synthesis of zinc oxide in the form of uniform nanoparticles.

Fabrication and Characteristics of Zinc Oxide- and Gallium doped Zinc Oxide thin film transistor using Radio Frequency Magnetron sputtering at Room Temperature (Zinc Oxide와 갈륨이 도핑 된 Zinc Oxide를 이용하여 Radio Frequency Magnetron Sputtering 방법에 의해 상온에서 제작된 박막 트랜지스터의 특성 평가)

  • Jeon, Hoon-Ha;Verma, Ved Prakash;Noh, Kyoung-Seok;Kim, Do-Hyun;Choi, Won-Bong;Jeon, Min-Hyon
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.359-365
    • /
    • 2007
  • In this paper we present a bottom-gate type of zinc oxide (ZnO) and Gallium (Ga) doped zinc oxide (GZO) based thin film transistors (TFTs) through applying a radio frequency (RF) magnetron sputtering method at room temperature. The gate leakage current can be reduced up to several ph by applying $SiO_2$ thermally grown instead of using new gate oxide materials. The root mean square (RMS) values of the ZnO and GZO film surface were measured as 1.07 nm and 1.65 nm, respectively. Also, the transmittances of the ZnO and GZO film were more than 80% and 75%, respectively, and they were changed as their film thickness. The ZnO and GZO film had a wurtzite structure that was arranged well as a (002) orientation. The ZnO TFT had a threshold voltage of 2.5 V, a field effect mobility of $0.027\;cm^2/(V{\cdot}s)$, a on/off ratio of $10^4$, a gate voltage swing of 17 V/decade and it operated in a enhancement mode. In case of the GZO TFT, it operated in a depletion mode with a threshold voltage of -3.4 V, a field effect mobility of $0.023\;cm^2/(V{\cdot}s)$, a on/off ratio of $2{\times}10^4$ and a gate voltage swing of 3.3 V/decade. We successfully demonstrated that the TFTs with the enhancement and depletion mode type can be fabricated by using pure ZnO and 1wt% Ga-doped ZnO.

Structure of Surface Oxide Formed on Zinc-Coated Steel Sheet During Hot Stamping

  • Shota Hayashida;Takuya Mitsunobu;Hiroshi Takebayashi
    • Corrosion Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.221-227
    • /
    • 2024
  • During hot stamping of hot-dip zinc-coated steel sheets such as hot-dip galvanized steel sheets and hot-dip galvannealed steel sheets, an oxide mainly composed of ZnO is formed on the sheet surface. However, excessive formation of ZnO can lead to a decrease in the amount of metal Zn in the coating layer, decreasing the corrosion resistance of hot-stamped members. Therefore, it is important to suppress excessive formation of ZnO. While the formation of Al oxides and Mn oxides along with ZnO layer during the hot stamping of hot-dip zinc-coated steel sheets can affect ZnO formation, crystal structures of such oxides have not been elucidated clearly. Thus, this study aimed to analyze structures of oxides formed during hot stamping of hot-dip galvannealed steel sheets using transmission electron microscopy. Results indicated the formation of an oxide layer comprising ZnAl2O4 at the interface between ZnO and the coating layer with Mn3O4 at the outermost of an oxide layer.

Zinc Oxide Nanostructured Thin Film as an Efficient Photoanode for Photoelectrochemical Water Oxidation

  • Park, Jong-Hyun;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.441-446
    • /
    • 2020
  • Synthesizing nanostructured thin films of oxide semiconductors is a promising approach to fabricate highly efficient photoelectrodes for hydrogen production via photoelectrochemical (PEC) water splitting. In this work, we investigate the feasibility as an efficient photoanode for PEC water oxidation of zinc oxide (ZnO) nanostructured thin films synthesized via a simple method combined with sputtering Zn metallic films on a fluorine-doped tin oxide (FTO) coated glass substrate and subsequent thermal oxidation of the sputtered Zn metallic films in dry air. Characterization of the structural, optical, and PEC properties of the ZnO nanostructured thin film synthesized at varying Zn sputtering powers reveals that we can obtain an optimum ZnO nanostructured thin film as PEC photoanode at a sputtering power of 40 W. The photocurrent density and optimal photocurrent conversion efficiency for the optimum ZnO nanostructured thin film photoanode are found to be 0.1 mA/㎠ and 0.51 %, respectively, at a potential of 0.72 V vs. RHE. Our results illustrate that the ZnO nanostructured thin film has promising potential as an efficient photoanode for PEC water splitting.