• Title/Summary/Keyword: Zinc and Lead

Search Result 543, Processing Time 0.033 seconds

Performance of Institute of Occupational Health, Korean Industrial Health Association in Proficiency Analytical Testing Program (대한산업보건협회 산업보건연구소의 PAT 정도관리 참여결과)

  • Lee, Jun-Seong;Yoo, Ho-Kyum;Oh, Mi-Soon;Park, Wha-Me;Yun, Gi-Sang;Choi, Ho-Chun;Chung, Kyou-Chull
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.313-321
    • /
    • 1996
  • Our laboratoy has been participated in Proficiency Analytical Testing (PAT) program which is operated by the Americal Industrial Hygiene Association in cooperation with the National Institute for Occupational Safety and Health (NIOSH). The program is designed to assist a laboratory improve its analytical performance by providing samples on a quarterly basis, evaluating the results, and providing reports on how well the laboratory performed. Evaluation of the results reported here covers five rounds of the PAT program (round 121~round 125). The way a laboratory is evaluated by PAT program is as follows: 1) There is no overall proficiency rating given to a laboratory. 2) A proficiency rating is given for each type of analyze (i.e., metals, silica, asbestos, solvents) that a laboratory analyzed. 3) Proficiency is rated acceptable ("A") if Z score lies between -3 and +3, and unacceptable if Z score is either higher than +3 ("H") or lower than -3 ("Lo"). Z score = (reported data - reference value) / standard deviation 4) For a laboratory to be rated proficient it must either have had no outliers over the most recent two rounds or of the samples actually analyzed over the past year (past four rounds), 75 % or more of the analyze sample results must be acceptable. According to the above rating criteria of PAT program, performance of metals including cadmium, lead, chromium and zinc, and asbestos sample analyses were rated acceptable ("A"). For silica analyses, all samples except one out of four samples in round 122 was rated high("H") were acceptable showing 95 % of ing 95 % of acceptance rate (19/20) throughout the rounds. Analyses of organic solvents were done on 52 samples in 9 types including methanol(MOH), 1,1,1-trichloroethane(MCM), tetrachloroethylene(PCE), trichloroethylene(TCE), benzene(BNZ), o-xylene(OXY), toluene(TOL), chloroform(CFM), 1,2-dichloroethane(DCE). All samples analyzed were rated acceptable except 2 samples that were rated high; one out of each four MCM and TCE samples in round 121, and one that was low out of four o-xylene analyses in round 122 indicating 94 % of acceptance rate(49/52) throughout the rounds. According to the laboratory rating criteria, our laboratory is rated proficient so far for all types of contaminants.

  • PDF

Effect of Artificial Granular Zeolite(AGZ) on Purification of Heavy Metals in Wastewater and Alleviation or Rice Seeding Growth Damage (입상 인공제올라이트를 이용한 중금속 폐수 정화와 벼 유묘 생육장해 경감)

  • Lee, Deog-Bae;Lee, Kyeong-Bo;Lee, Sang-Bok;Kim, Jae-Duk;Henmi, Teruo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.446-451
    • /
    • 1999
  • This study was carried out to investigate some mineralogical characteristics of Artificial Granular Zeolite (AGZ) and effect of AGZ on purification and alleviation of rice seedling damages of mine wastewater containing heavy metals. AGZ had mainly representative Na-P1 peaks and some $C_3S$ peaks of Portland cement in X-ray diffractogram. Differential thermal analysis represented that AGZ had weak endothermic peak around $130^{\circ}C$ and new deep endothermic peak around $750^{\circ}C$ as compared to powdery artificial zeolite. The ranking of heavy metals removals by AGZ, was lead> copper> cadmium> zinc in the synthetic wastewater. Root growth of rice seedling was greatly inhibited in the mine wastewater, and died after all. As AGZ treated into the mine wastewater with the ratio 1 : 50 (W : V) for one day or 1 : 100 for 4 days, the concentrations of heavy metals in the mine wastewater were decreased to below the critical concentration for agricultural use. And rice seedlings were grew with little damages in the purified water by AGZ.

  • PDF

Strategies for Development of Seafloor Polymetallic Sulphides in Consideration of International Progress (해저열수광상 개발동향과 우리나라의 대응방안)

  • Park, Seong-Wook;Yang, Hee-Cheol;Jeong, Hyeong-Su
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.271-279
    • /
    • 2008
  • Polymetallic sulphides means hydrothermally formed deposits of sulphide minerals which contain concentrations of metals including, inter alia, copper, lead, zinc, gold and silver. Nautilus is the first company to commercially explore the seafloor polymetallic sulphide deposits. The Company holds exploration licences and exploration applications for more than 370,000 $km^2$ in the jurisdictional seas of Papua New Guinea, Fiji, Tonga, the Solomon Islands and New Zealand along the western Pacific Ocean's Rim of Fire. Neptune Minerals is also a leading explorer and developer in this field, with exploration licences awarded totalling more than 270,000 $km^2$ in the territorial seas or EEZ of New Zealand, Papua New Guinea and the Federated States of Micronesia. These two companies now carry out the most active investment activities for seafloor polymetallic sulphide deposits with a goal of commercial production by 2010. China and Japan carry out exploration activities for the seafloor polymetallic sulphide deposits to secure supplies of strategic metals. China carries out national R&D projects relating to deep sea mineral resources in the world ocean through China Ocean Mineral Resources R&D Association(COMRA). And Japan investigates her own EEZ for exploration of the seafloor polymetallic sulphide deposits. In consideration of aforementioned international activities of coastal nations as well as private companies for exploring the sulphide deposits, Korea shall prepare strategic plans : First, consolidation of the authorities concerned and legislative support; second, determination of main entity of the project; third, securing government's decisive investment of sufficient budget; and lastly, establishment of the mid, long-term plan for development of seafloor polymetallic sulphides deposits.

Pollution History of the Masan Bay, Southeast Korea, from Heavy Metals and Foraminifera in the Subsurface Sediments (중금속 원소와 유공충을 이용한 마산만 퇴적물의 오염 역사에 관한 연구)

  • Cho, Jin-Hyung;Jeong, Kap-Sik;Chung, Chang-Soo;Kwon, Su-Jae;Park, Sung-Min;Woo, Han-Jun
    • Journal of the Korean earth science society
    • /
    • v.24 no.7
    • /
    • pp.635-649
    • /
    • 2003
  • Heavy metal concentrations and benthic foraminiferal distributions were investigated in three short sediment cores in order to understand the pollution history in Masan Bay. Sedimentation rates were 0.33 cm/yr, 0.20 cm/yr and 0.33 cm/yr in the inner bay, the out fall of Dugdong sewage disposal plant, and bay mouth, respectively. The rapid increases of copper, zinc and lead concentrations at the core depth of 10 cm the upper part indicated that Masan Bay has been polluted with industrial wastes since the 1940s. Benthic foraminifera in core sediments show that the variations in their distribution were followed by industrial pollution in the bay. The number of individuals and species diversity decreased, whereas agglutinated tests increased upward in the cores with increased heavy metal pollution. These shifts effectd the abundance of few tolerant forms and consequently decreased the species diversity. The opportunistic species Eggerella advena and Trochammina pacifica increased in polluted sediments. These species can be used as an indicator for assessments of environmental quality in Masan Bay.

Isolation of Cadmium-Tolerant Bacteria and Characterization of Cadmium Accumulation into the Bacteria Cell (카드뮴 내성균(耐性菌)의 분리(分離), 동정(同定)및 균체내(菌體內) 카드뮴 축적(蓄積) 특성(特性))

  • Cho, Ju-Sik;Han, Mun-Gyu;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.1
    • /
    • pp.77-85
    • /
    • 1992
  • Of the cadmium-tolerant 162 bacterial strains isolated from soils, river waters or active sludges of waste-water disposal plants in the Gyeongnam province a strain C1, which showed considerably higher growth rate in the agar plate containing 2000 ppm than any other strains isolated, was identified as a Pseudomonas putida or its similar strain when analyzed by taxonomical characteristics. Optimum pH and temperature for the growth of the P, putida were 7.0 and $30^{\circ}C$, respectively. This strain was resistant to antibiotics(ampicillin, chloramphenicol and streptomycin), and heavy metals(lithium, cupper, lead and zinc). This strain utilized salicylate, naphthalene or xylene as a sole carbon source. The rate of cadmium accumulation in P. putida cell was enhanced at low concentration of Cd in the growth media. The maximum cadmium absorption by this strain grown in 1 and l0ppm of Cd was respectively 78% and 60% 24 hrs after culture, but in 100 ppm Cd, 40% 48 hrs after culture. Addition of a non-ionic surfactant Triton X-100(0.1%) to the medium enhanced the accumulation of cadmium in the P. putida up to approximately 37%.

  • PDF

Effect of External Factors on Heavy Metal Accumulation in the Cell of Heavy Metal-Tolerant Microorganisms (중금속내성균의 중금속 축적에 미치는 외부요인의 영향)

  • Cho, Ju-Sik;Lee, Hong-Jae;Lee, Won-Kyu;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.124-129
    • /
    • 1997
  • This study was performed to develop the biological treatment technology of wastewater polluted with heavy metals. Heavy metal-tolerant microorganisms, such as Pseudomonas putida, P. aeruginosa, P. chlororaphis and P. stutzeri possessing the ability to accumulate cadmium, lead, zinc and copper, respectively, were isolated from industrial wastewater and mine wastewater polluted with various heavy metals. The effect of several external factors, such as temperature, pH and heavy metal compounds on heavy metal accumulation in the cells was investigated. The amount of heavy metal accumulation into cells according to the kind of heavy metal compound was slightly increased in the case of the heavy metal compound with -nitrate group, but generally, there is little change according to the kind of compound in the amount of heavy metal accumulation. The amount of heavy metal accumulation according to the precultured time was increased in the case of the cell precultured for 24 hours, but generally the precultured time did not affect to the amount of heavy metal accumulation. Heavy metal accumulation into cells was affected by several external factors, such as temperature and pH. The optimum temperature and optimum pH of the accumulation of heavy metal into cells were $20{\sim}37^{\circ}C$ and pH $6{\sim}8$, respectively. By increasing the concentration of each heavy metal-tolerant microorganism in the solution, the total amount of heavy metal accumulated was increased, whereas the amount of heavy metal accumulated per cell(mg, heavy metal/g, dry cells) was decreased. These results indicated that the amount of heavy metal accumulated was not proportional to the concentration of microorganisms.

  • PDF

Effects of Fly Ash on Heavy Metal Contents in Percolated Water of Paddy Soil (석탄회 시용이 논 토양수중의 중금속성분 용출에 미치는 영향)

  • Kim, Yong Woong;Yoon, Chung Han;Shin, Bang Sup;Kim, Kwang Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.236-242
    • /
    • 1996
  • This study was conducted to investigate the changes of heavy metals in percolated water of paddy soil in which rice was cultivated in conditions of 0%, 5%. 30% addition of bituminous and anthracite fly ash respectively. In cultivated plot, the contents of Fe in percolated water increased gradually during the cultivation. But there was no sharp difference of Fe contents in fly ash treated plots. The contents of Mn in percolated water increased gradually during the cultivation and was high in the cultivated plot. But difference in the contents of Mn among plots not clear. The contents of Zn in percolated water was highest during 20-25 days in the cultivation, thereafter decreased gradually. The fly ash did not cause to increase the contents of Zn in percolated water. The contents of Cu in percolated water decreased through the cultivation. Fly ash treatment did not cause to increase the contents of Cu in percolated water. The contents of Pb in percolated water decreased gradually over the cultivation. Fly ash treatment did not largely influence to Pb percolation. In mid-July. Pb did not almost appeared in percolated water. The contents of Cd was highest about 15 days of the transplant, thereafter decreased gradually. After 40 day of the cultivation, leach of Cd stopped. When fly ashes were applied in paddy soil, the contents of heavy metals in percolated water was not so much compared with control plot. It seems that originally low contents of heavy metals in fly ash and decrease in solubility of heavy metals in a relatively high soil pH make it possible to use fly ash as a soil conditioner.

  • PDF

Atomic Absorption Spectrophotometric Analysis of Heavy Metals in Unpolished Rice Grains (원자흡광법(原子吸光法)에 의(依)한 현미중(玄米中)의 중금속(重金屬) 함량분석(含量分析)에 관(關)한 연구(硏究))

  • Park, Seung Heui
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.1
    • /
    • pp.126-132
    • /
    • 1981
  • Rice grains harvested from paddy fields around industrial areas of Kyongin, Iri, and Jeonju were taken and analysed the contents of heavy metals which were considered to be accumulated in those rice grains. Atomic absorption spectrophotometer was applied for analysis of heavy metals such as copper(Cu), zinc(Zn), lead(Pb) and cadmium (Cd) in unpolished rice grains. The content of Cu in rice grains harvested from Iri was the lowest, 2.94 ppm, while those from Seo-Myon, Shiheung-Gun was the highest, 3.65 ppm. The contents of Zn and Pb in rice grains were ranged 20.56~27.21 ppm and 0.38~0.53 ppm, respectively. Cd content were exceptionally lower than the regulated level, 1.0 ppm. The content of this metal detected in rice grains from Seo-Myon was the highest, 0.509 ppm, but those of other areas were much lower, ranged 0.040~0.136 ppm. The present concentrations of Cu, Zn, and Pb in rice grains were also lower than the expected level and below the maximum permissible concentrations.

  • PDF

Surface-modified Nanoparticle Additives for Wear Resistant Water-based Coatings for Galvanized Steel Plates

  • Becker-Willinger, Carsten;Heppe, Gisela;Opsoelder, Michael;Veith, H.C. Michael;Cho, Jae-Dong;Lee, Jae-Ryung
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.147-152
    • /
    • 2010
  • Conventional paints for conversion coating applications in steel production derived mainly from water-based polymer dispersions containing several additives actually show good general performance, but suffer from poor scratch and abrasion resistance during use. The reason for this is because the relatively soft organic binder matrix dominates the mechanical surface properties. In order to maintain the high quality and decorative function of coated steel sheets, the mechanical performance of the surface needs to be improved significantly. In fact the wear resistance should be enhanced without affecting the optical appearance of the coatings by using appropriate nanoparticulate additives. In this direction, nanocomposite coating compositions (Nanomer$^{(R)}$) have been derived from water-based polymer dispersions with an increasing amount of surface-modified nanoparticles in aqueous dispersion in order to monitor the effect of degree of filling with rigid nanoparticles. The surface of nanoparticles has been modified for optimum compatibility with the polymer matrix in order to achieve homogeneous nanoparticle dispersion over the matrix. This approach has been extended in such a way that a more expanded hybrid network has been condensed on the nanoparticle surface by a hydrolytic condensation reaction in addition to the quasi-monolayer type small molecular surface modification. It was expected that this additional modification will lead to more intensive cross-linking in coating systems resulting in further improved scratch-resistance compared to simple addition of nanoparticles with quasi-monolayer surface modification. The resulting compositions have been coated on zinc-galvanized steel and cured. The wear resistance and the corrosion protection of the modified coating systems have been tested in dependence on the compositional change, the type of surface modification as well as the mixing conditions with different shear forces. It has been found out that for loading levels up to 50 wt.-% nanoparticles, the mechanical wear resistance remains almost unaffected compared to the unmodified resin. In addition, the corrosion resistance remained unaffected even after $180^{\circ}$ bending test showing that the flexibility of coating was not decreased by nanoparticle addition. Electron microscopy showed that the inorganic nanoparticles do not penetrate into the organic resin droplets during the mixing process but rather formed agglomerates outside the polymer droplet phase resulting in quite moderate cross linking while curing, because of viscosity. The proposed mechanisms of composite formation and cross linking could explain the poor effect regarding improvement of mechanical wear resistance and help to set up new synthesis strategies for improved nanocomposite morphologies, which should provide increased wear resistance.

Evaluation of Heavy Metal Pollution in the Dumping Site of the Dredged Sediment, Masan Bay (마산만 오염퇴적물 준설토 투기해역의 중금속 오염평가)

  • Kwon Young-Tack
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.2
    • /
    • pp.75-81
    • /
    • 2004
  • A large amount 2.1×106 ㎥ of the polluted sediment was dredged from the Masan Bay and deposited in Gapo confined area, Masan. The dissolved metal concentrations of seawater in the dumping site (Gapo area) were observed during one tidal cycle and compared with those of seawater obtained from Jinhae Bay. The sediment was evaluated as from Non polluted to Moderately polluted by USEPA standards. It was judged that toxicological effects of sediment analyzed ranged from ERL to ERM with copper and zinc, and ERL with cadmium, chrome, lead, and nickel by the Adverse Biological Effects. The pollutant concentration was low in surface sediment compared to deeper sediment since the sediments with relatively low concentrations of pollutant were dumped to the surface. The pollutant concentration was low in surface sediment compared to deeper sediment since the sediments with relatively low concentrations of pollutant were dumped to the surface. The benthic organisms in Gapo area had higher concentrations of trace metals (Oyster: Zn 238.96, Cu 5.29 ㎍/g wet wt., Clam: Zn 17.71, Cu 1.00 ㎍/g wet wt., Mussel. Zn 187.98, Pb 0.28, Cr 0.15, Mn 4.23, Sr 1.45 and Fe 100.33 ㎍/g wet wt.) compared to outside of dumping site. However, the trace metal level in the bivalves was less than the NFPQIS (National Fisheries Products Quality Inspection Service) standard.

  • PDF