Pollution History of the Masan Bay, Southeast Korea, from Heavy Metals and Foraminifera in the Subsurface Sediments

중금속 원소와 유공충을 이용한 마산만 퇴적물의 오염 역사에 관한 연구

  • Cho, Jin-Hyung (Marine Geoenvironment & Resources Research Division, KORDI) ;
  • Jeong, Kap-Sik (Marine Geoenvironment & Resources Research Division, KORDI) ;
  • Chung, Chang-Soo (Ocean climate & Environment Research Division, KORDI) ;
  • Kwon, Su-Jae (Marine Geoenvironment & Resources Research Division, KORDI) ;
  • Park, Sung-Min (Marine Geoenvironment & Resources Research Division, KORDI) ;
  • Woo, Han-Jun (Marine Geoenvironment & Resources Research Division, KORDI)
  • 조진형 (한국해양연구원 해저환경 자원연구본부) ;
  • 정갑식 (한국해양연구원 해저환경 자원연구본부) ;
  • 정창수 (한국해양연구원 해양기후 환경연구본부) ;
  • 권수재 (한국해양연구원 해저환경 자원연구본부) ;
  • 박성민 (한국해양연구원 해저환경 자원연구본부) ;
  • 우한준 (한국해양연구원 해저환경 자원연구본부)
  • Published : 2003.12.31

Abstract

Heavy metal concentrations and benthic foraminiferal distributions were investigated in three short sediment cores in order to understand the pollution history in Masan Bay. Sedimentation rates were 0.33 cm/yr, 0.20 cm/yr and 0.33 cm/yr in the inner bay, the out fall of Dugdong sewage disposal plant, and bay mouth, respectively. The rapid increases of copper, zinc and lead concentrations at the core depth of 10 cm the upper part indicated that Masan Bay has been polluted with industrial wastes since the 1940s. Benthic foraminifera in core sediments show that the variations in their distribution were followed by industrial pollution in the bay. The number of individuals and species diversity decreased, whereas agglutinated tests increased upward in the cores with increased heavy metal pollution. These shifts effectd the abundance of few tolerant forms and consequently decreased the species diversity. The opportunistic species Eggerella advena and Trochammina pacifica increased in polluted sediments. These species can be used as an indicator for assessments of environmental quality in Masan Bay.

마산만의 오염과정을 파악하기 위하여 3개 정점의 코어 퇴적물에서 중금속 함량과 저서성 유공충의 분포를 조사하였다. 마산만의 퇴적속도는 마산항 0.33 cm/yr, 덕동 하수종말 처리장 앞 0.20 cm/yr, 마산만 입구 0.33 cm/yr로 나타났다. 퇴적물 깊이 약 15 cm부터 표층까지 Cu, Zn, Pb 함량이 뚜렷하게 증가하는 것은 1940년대 이후 점진적으로 축적되던 오염물질이 1960년대 이후 산업폐기물에 의해 급격하게 증가했기 때문인 것으로 해석된다. 코어 퇴적물에서 나타나는 저서성 유공충의 수직적인 분포는 오염에 따른 유공충의 반응을 잘 나타내고 있다. 퇴적물 상부로 중금속 함량이 증가함에 따라 개체수와 종 다양성은 감소하고 사질유공충의 비율은 증가하였다. 이러한 현상은 오염이 증가함에 따라 몇몇 내성종들 만이 존재함으로써 결과적으로 종 다양성이 감소하였음을 반영한다. 기회종인 Eggerella advena와 Trochammina pacifica는 오염퇴적물에서 뚜렷한 증가를 보였다. 이러한 종들은 마산만의 현생 오염 환경을 평가할 수 있는 유용한 환경 지시자로 사용될 수 있을 것이다.

Keywords

References

  1. 마산시, 1994, 마산만 준설에 따른 해양환경 종합 모니터링. 264p
  2. 우한준, 김효영, 정갑식, 천종화, 김성은, 추용식, 1999, 마산만 퇴적환경 오염에 따른 저서성 유공충 분포 변화. 한국해양학회지 바다, 4, 144-154
  3. 이찬원, 권영택, 한성대, 1991, 진해만 일원 오염실태 조사보고서. 환경처, 195 p
  4. 정갑식, 조진형, 김기현, 우한준,2001, 마산만의 중금속 오염의 역사와 오염형 원소(구리, 납, 아연)의 거동. 한국해양학회 2001년도 추계학술발표회, p. 75
  5. 정윤병, 1981, 한국경제의 발전과정. 돌배게, 서울, 164 p
  6. 한국해양연구소, 1986, 한국 연안 퇴적물의 중금속 오염 역사에 관한 연구. BSPE 59-104-4, 48 p
  7. 한국해양연구소, 1993, 연안 해양환경에서의 탄소,질소,인,규소의 플럭스 변화에 관한 연구. BSPE 00307-575-4, 84 p
  8. 한국해양연구소, 1997, 진해,마산만 수질환경 관리모델 개발(II). BSPE 97607-00-1040-2, 234 p
  9. 한국해양연구소, 1998, 진해,마산만 수질환경 관리모델 개발(II). BSPE 98703-01-1147-2, 395 p
  10. Alve, E., 1991, Benthic foraminifera in sediment cores reflecting heavy metal pollution in Sorfjord, Western Norway. Journal of Foraminiferal Research, 21, 1-19 https://doi.org/10.2113/gsjfr.21.1.1
  11. Bandy, O.L., Ingle, J.C., and Resig, J.M., 1965, Foramin-iferal trends, Hyperion outfall, California. Limnology and Oceanography, 10, 314-332 https://doi.org/10.4319/lo.1965.10.3.0314
  12. Berner, R.A., 1984, Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, 48, 605-615 https://doi.org/10.1016/0016-7037(84)90089-9
  13. Buzas, M.A. and Gibson, T.G., 1969, Species diversity: benthonic foraminifera in western north Atlantic. Science, 163, 72-75 https://doi.org/10.1126/science.163.3862.72
  14. Collins, E.S., Scott, D.B., Gayes, P.T., and Medioli, F.S., 1995, Foraminifera in Winyah bay and north inlet marshes, South Carolina: relationship to local pollution sources. Journal of Foraminiferal Research, 25, 212-223 https://doi.org/10.2113/gsjfr.25.3.212
  15. Ellison, R.L., Broome, R, and Ogilvie, R., 1986, Foramin-iferal response to trace metal contamination in the Patapsco river and Baltimore harbour, Maryland. Marine Pollution Bulletin, 17, 419-423 https://doi.org/10.1016/0025-326X(86)90321-8
  16. Folk, R.L. and Ward, W., 1957, Brazos river bar: A study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27, 3-26 https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  17. Hong, G.H., Park, Y.A., and Lee, K.W., 1983, Partitioning of heavy metals in sediments from Jinhae Bay, Korea. Journal of the Geological Society of Korea, 18, 180-184
  18. Hong, J.S., 1987, Summer oxygen deficiency and benthic biomass in the Chinhae Bay system, Korea. Journal of the Korean Society of Oceanography, 22, 246-256
  19. Howe, H.V., 1941, The use of soap in the preparation of samples for micropaleontological study. Journal of Paleontology, 15, 691
  20. Kim, M.S., Chu, K.S., and Kim, O.S., 1986, Investigation of some influence of the Nakdong river water on marine environment in the estuarine area using Landsat imagery. Republic. Korea Mining Science Technology, 93-147
  21. Lee, C.W, Yang, W.J., and Kwon, Y.T., 1990, Metal distri-bution and contamination in sediments from estuaries of Masan Bay as a potential source of groundwater quality deterioration. Ocean Research, 12, 97-104
  22. Lee, K.W, Lee, D.S., Lee, S.H., and Matsumoto, E., 1988, History of heavy metal pollution in Masan and illsan Bay sediments, Ocean Research, 10, 7-13
  23. Lee, S.H. and Lee, K.W., 1983, Heavy metals in sediments from Jinhae Bay, Korea. Journal of the Korean Society of Oceanography, 18, 49-54
  24. MacArther, R.H. and MacArther, J.W, 1961, On bird species diversity. Ecology, 42, 544-598
  25. Park, J.S., 1982, Studies on the characteristics of red tide and environmental condition in Chinhae Bay. Bulletin of Fisheries Research Development Agency, 28, 55-88
  26. Park, S.c. and Lee, K.W., 1996, Modem sedimentary envi-ronment of Jinhae Bay, SE Korea. Journal of the Korean Society of Oceanography, 31, 43-54
  27. Park, S.C., Lee, K.W., and Song, Y.I., 1995, Acoustic char-acters and distribution pattern of modern fine-grained deposits in a tide-dominated coastal bay: Jinhae Bay, southeast. Geo-Marine Letters, 15, 77-84 https://doi.org/10.1007/BF01275410
  28. Patterson, R. T., 1990, Intertidal benthic foraminiferal biofa-cies on the Fraser River Delta, British Columbia: mod-ern distribution and paleoecological importance. Micropaleontology, 36, 229-244 https://doi.org/10.2307/1485507
  29. Resig, J.M., 1960, Foraminiferal ecology around ocean out-falls off southern Califomia. In: Waste disposal in the marine environment, Pergamon Press, London, 104-121
  30. Schafer, C.T., 1970, Studies of benthic foraminifera in Restigouche Estuary: faunal distribution patterns near pollution sources. Maritime Sediments, 6, 121-134
  31. Schafer, c.T., 1973, Distribution of foraminifera near pollu-tion sources in Chaleur Bay. Water, Air and Soil Pollution, 2, 219-233 https://doi.org/10.1007/BF00655698
  32. Schafer, C.T., Wagner, F.J.E., and Ferguson, C., 1975, Occurrence of foraminifera, molluscs and ostracods adjacent to the industrialized shoreline of Canso Strait, Nova Scotia. Water, Air and Soil Pollution, 5, 79-96 https://doi.org/10.1007/BF00431582
  33. Seiglie, G.A., 1975, Foraminifers of Guayanilla Bay and their use as environmental indicators. Revista Espanola de Micropaleontologia, 7, 453-487
  34. Setty, M.G.A.P., 1982, Pollution effects monitoring with foraminifera as indices in the Thana Greek, Bombay Area. International Journal of Environmental Studies, 18, 205-209 https://doi.org/10.1080/00207238208709947
  35. Watkins, J.G., 1961, Forarniniferal ecology around the Orange County, Califomla, ocean sewerage outfall. Micropaleontology, 7, 199-206 https://doi.org/10.2307/1484279