• Title/Summary/Keyword: Zero-carbon

Search Result 244, Processing Time 0.025 seconds

INFRARED MODEL SPECTRA FOR EVOLVING RED SUPERGIANTS

  • Suh, Kyung-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.25-35
    • /
    • 1993
  • Stars lose their masses constantly after their birth, but the stellar mass loss is especially prominent in the last stages of their lives. It has been believed that red superginats are losing their masses at rates of 10-8∼10-4M/yr. They are known to be asymptotic giant branch stars that are at the end stages of the evolution for the stars with zero age main sequence masses of 1∼10M. Red supergiants are often characterized by the thick dust envelopes and large amplitude pulsations. According to their energy spectra, chemical composition, they are divided into three main group; M-type Miras, C-type carbon stars, and OH/IR stars. The purpose of this work is to clarify the evolutionary aspects in the physical parameters of the red supergiants mainly from the direct interpretation of their infrared spectra.

  • PDF

On the Fire Behavior Due to the Ventilation Condition in the Fire Compartment (환기 조건에 따른 화재거동 연구)

  • Kim, Sung-Chan;Hamins, Anthony
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.367-373
    • /
    • 2008
  • A series of fire experiments has been conducted to provide an improved understanding of the fire structure of under-ventilated compartment fires. A comprehensive and quantitative assessment of gaseous species from the fire was made in the upper layer of fire in a 40 % reduced scale ISO 9705 fire compartment. The global equivalence ratio (GER) concept was used to characterize the fire behavior for various fire sizes, fuel types and ventilation conditions. The oxygen concentration in the upper layer reached to zero near the global equivalence ratio of $0.4{\sim}0.6$ while the carbon monoxide concentration increases with increasing the global equivalence ratio. Classification parameters of ISO19706 were also compared with the reduced scale experimental data for under ventilation fire.

Properties of Charcoal-packed Functional Wood Panel(I) (목탄을 활용한 기능성 목질 벽판의 특성(I))

  • 황원중;권구중;심응섭;이성재;김남훈
    • Journal of the Korea Furniture Society
    • /
    • v.13 no.2
    • /
    • pp.29-38
    • /
    • 2002
  • Five type boxes, which are from brick, wood panel, charcoal-packed wood panel, plywood panel and charcoal-packed plywood panel, were prepared. Relationship of preservation characteristic of strawberry and change of relative humidity in the boxes were measured. Physical properties and industrial analysis of white charcoal used were also investigated. Physical Properties and industrial analysis showed that charcoal had: 1) $0.62-0.79g/cm^3$ of density, zero of refining degree and 8.6-9.4 of pH; and 2) 1.0-3.0% of moisture content, 1.9-2.9% of ash content, 3.9-5.0 of volatiles and 89.2-93.2% of fixed carbon, indicating high quality. During the experimental period, relative humidity was highest in the brick box and lowest in the charcoal-packed plywood panel box. Weight loss of strawberry was greatest in charcoal-packed wood Panel box and very little in brick box. In the boxes with charcoal, strawberry was preserved for 6 days without mold, but in brick box it was covered with mold in 3 days. From these results, it is suggested that charcoal-packed wood panel can be used for better ecomaterial.

  • PDF

Neurospora의 생육시기에 따른 호흡능의 변화와 자외선 감수성과의 상관관계

  • 이영녹
    • Journal of Plant Biology
    • /
    • v.6 no.4
    • /
    • pp.1-4
    • /
    • 1963
  • Using conidia of Neurospora, changes in respiratory activities and the sensitivity to the ultraviolet light of the cells at different growing stages were measured by manometric methods, and the correlation between them was observed. Efficiency in the utilization of various carbon sources, such as, glucose, sucrose, maltose, starch and sodium acetate, in growth and exogenous respiration of N. crassa was also determined. Growth rate of N. crassa was decreased considerably in the medium containing sodium acetate than in the glucose medium and was almost zero in the lactose medium, whereas the utilization of sucrose, maltose and starch was ve교 high, as that of glucose. Respiratory activities of the cells veried considerably depending upon their different growing stages. Actively growing hyphae exhibited the greatest activity in exogenous glucose respiration, followed by germinating and activated conidia in decreasing order. There was no proportional relationship between the dose of ultraviolet light irradiated and its effect on the respiratory activity of the cells, though the more the dose of ultraviolet light, the more the injury. The sensitivity of the cells to ultraviolet light varied with the different respiratory activities of the cells linked to the developmental stages. In general, the more actively growing cells having high respiratory activities exhibited the more serious injury.

  • PDF

Preliminary Economic Analysis based on Optimization of Green Ammonia Plant Configuration in the Middle East for Import into Korea

  • Hyun-Chang Shin;Hak-Soo Mok;Woo-Hyun Son
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_1
    • /
    • pp.277-285
    • /
    • 2024
  • Hydrogen is considered a key energy source to achieve carbon neutrality through the global goal of 'net zero'. Due to limitations in producing green hydrogen domestically, Korean companies are interested in importing green hydrogen produced overseas. The Middle East has high-quality solar energy resources and is attracting attention as a region producing green hydrogen using renewable energy. To build a green ammonia plant, optimization of the production facility configuration and economic feasibility analysis are required. It is expected that it will contribute to reviewing the economic feasibility of constructing overseas hydrogen production plants through preliminary economic feasibility analysis.

Economic Feasibility Comparison of Overseas Green Ammonia Project Using Renewable Energy (신재생 에너지를 이용한 해외 그린 암모니아 프로젝트에 대한 경제성 비교)

  • Hyun-Chang Shin;Hak-Soo Mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.547-553
    • /
    • 2024
  • Hydrogen is considered a key energy source to achieve carbon neutrality through the global goal of 'Net Zero'. Due to limitations in domestic green hydrogen production, Korean companies are interested in importing green hydrogen produced overseas. Because Australia and the Middle East possess high-quality renewable energy resources, they are attracting attention as suitable regions for producing green hydrogen using renewable energy. The cost of constructing and operating a green ammonia plant varies depending on the region. In this study, an economic feasibility comparison of green ammonia plant construction in Australia and the Middle East is conducted. Through this, it is expected to contribute to the economic analysis and feasibility analysis of the project to import hydrogen in the form of green ammonia into Korea.

Technology Trends of Smart Abnormal Detection and Diagnosis System for Gas and Hydrogen Facilities (가스·수소 시설의 스마트 이상감지 및 진단 시스템 기술동향)

  • Park, Myeongnam;Kim, Byungkwon;Hong, Gi Hoon;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.41-57
    • /
    • 2022
  • The global demand for carbon neutrality in response to climate change is in a situation where it is necessary to prepare countermeasures for carbon trade barriers for some countries, including Korea, which is classified as an export-led economic structure and greenhouse gas exporter. Therefore, digital transformation, which is one of the predictable ways for the carbon-neutral transition model to be applied, should be introduced early. By applying digital technology to industrial gas manufacturing facilities used in one of the major industries, high-tech manufacturing industry, and hydrogen gas facilities, which are emerging as eco-friendly energy, abnormal detection, and diagnosis services are provided with cloud-based predictive diagnosis monitoring technology including operating knowledge. Here are the trends. Small and medium-sized companies that are in the blind spot of carbon-neutral implementation by confirming the direction of abnormal diagnosis predictive monitoring through optimization, augmented reality technology, IoT and AI knowledge inference, etc., rather than simply monitoring real-time facility status It can be seen that it is possible to disseminate technologies such as consensus knowledge in the engineering domain and predictive diagnostic monitoring that match the economic feasibility and efficiency of the technology. It is hoped that it will be used as a way to seek countermeasures against carbon emission trade barriers based on the highest level of ICT technology.

Four strategic approaches to the national nature restoration plan for achieving carbon neutrality and national environment recovery (탄소중립 및 국토환경 회복을 위한 녹색복원 종합계획의 4가지 전략적 접근)

  • Son, Seung-Woo;Lee, Sang-Hyuk;Kim, Byung-Suk;Lee, Gil-Sang;Choi, Hee-Sun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.2
    • /
    • pp.1-16
    • /
    • 2024
  • To achieve carbon neutrality and restore the national environment, there is growing interest in policies to transform national land areas into green space, such as expanding nature-based solutions, increasing biodiversity, and improving ecosystem service functions. In addition to complying with international agreements such as the United Nations Framework Convention on Climate Change and the Convention on Biological Diversity, it is necessary to expand green spaces to achieve the 2050 Carbon Neutrality goal, which can be achieved by restoring the damaged land in an ecological way. However, it is challenging to implement green restoration in a systematic and active way due to conflicts of interest among landowners and lack of institutional support and advanced technology. Therefore, this study aims to develop a strategy to expand green restoration and implement it smoothly and systematically. This study examined the current status of green restoration in South Korea by investigating green restoration laws and systems and overseas trends, and by surveying the perceptions of 1,000 people selected from a pool of the public. The results of this study show that it is difficult to implement the green restoration efficiently because the laws related to restoration are scattered. According to the relevant legal plans, the perception and direction of restoration is to pursue a sustainable national land environment, allow people to benefit from nature, improve the quality of life, and nurture related industries and human resources. In the international community, it is mentioned that green restoration contributes to achieving the 2050 Carbon Neutrality goal, revitalizing green industries, developing and applying advanced technologies, maintaining consistency in restoration-related policies, expanding citizens' access to green spaces, and adopting nature-based solutions. Both experts and the public are aware of the seriousness of the damage to the natural environment and prefer restoration with human use rather than focusing on natural recovery. It is expected that this study will contribute to the future direction of green restoration and the implementation of tasks for the sustainable restoration of the national land environment and the zero-carbon era.

The Effect of Some Amendments to Reduce Ammonia during Pig Manure Composting (몇 가지 처리제의 첨가에 의한 돈분의 퇴비화 과정 중 암모니아 발생 저감 효과)

  • Joo, Jin-Ho;Kim, Dae-Hoon;Yoo, Jae-Hong;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.269-273
    • /
    • 2007
  • Occurrence of malodor could cause adverse impacts on human health and increase public interest. Therefore, scientific methods to decrease odor is required. Endeavor to decrease odor from compost however has not fully been successful. The purpose of this research is assessment of some amendments to reduce $NH_3$ from immature composts. Calcium hydroxide was applied to composts due to it's characteristics to increase pH. Activated carbon and zerovalent iron (ZVI) were selected because of their adsorption properties. The research results were as follows: Calcium hydroxide, activated carbon, zerovalent iron increased the composting temperature above $60^{\circ}C$. The addition of calcium hydroxide, activated carbon, and ZVI to compastry process increased pH 8.6 - 8.8 from $1^{st}$ day to $14^{th}$ day. During the 14 days of composting, addition of calcium hydroxide, activated carbon and ZVI changed EC from $2.15-0.66dS\;m^{-1}$, $1.48-1.11dS\;m^{-1}$, respectively and $1.77-0.68dS\;m^{-1}$. The difference in EC of the compost was due to irregularities of samples. Organic matter in the compost decreased through out theexcept control. The $NH_4-N/NO_3-N$ ratio of all experimental compost increased through the process. The addition of activated carbon, calcium hydroxide and ZVI decreased $NH_3$ from 0.1ppm, 0.7ppm and 1.7ppm more than the control (pig manure and sawdust), 9.3ppm, in 30 days of composting. In conclusion, odor from prematured compost decreased by addition of chemicals like calcium hydroxide, activated carbon, zerovalent iron. Moreover, use of these $NH_3$ reducers alone or together combined at different periods of composting etc. could decrease $NH_3$.

Atmosphere-forest Exchange of Ammoniacal Nitrogen in a Subalpine Deciduous Forest in Central Japan during a Summer Week

  • Hayashi, Kentaro;Matsuda, Kazuhide;Takahashi, Akira;Nakaya, Ko
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.134-143
    • /
    • 2011
  • The present study aimed to investigate the diurnal variations in air concentrations and exchange fluxes of ammoniacal nitrogen ($NH_x$: ammonia ($NH_3$) and particulate ammonium) in a subalpine deciduous forest in central Japan during a week in summer. The $NH_3$ concentrations ($0.50\;{\mu}g\;N\;m^{-3}$ on average) showed a clear circadian variation, i.e., high and low in the daytime and nighttime, respectively. The concentration of particulate ammonium in the coarse fractions was extremely low, whereas that for the PM2.5 fraction was relatively high $0.55\;{\mu}g\;N\;m^{-3}$ on average). The main inorganic ion components of PM2.5 at the study site were ammonium and sulfate. The exchange fluxes of $NH_x$ were bidirectional. Both the maximum and minimum values occurred in the daytime, i.e., $0.39\;mg\;N\;m^{-2}\;hr^{-1}$ of downward flux and $0.11\;mg\;N\;m^{-2}\;hr^{-1}$ of upward flux for $NH_3$ and $0.25\;mg\;N\;m^{-2}\;hr^{-1}$ of downward flux and $0.13\;mg\;N\;m^{-2}\;hr^{-1}$ of upward flux for PM2.5 ammonium. The exchange fluxes of $NH_x$ at night could be considered as zero. The mean deposition velocity during the research period was almost zero for both $NH_3$ and PM2.5 ammonium. The atmosphere-forest exchange of $NH_x$ in the forest during the study period was balanced. The remarkably large deposition of $NH_x$ was attributable to meteorological events such as showers the night before that thoroughly washed the forest canopy and subsequent clear skies in the morning, which enhanced convection. The cleaning effect of rainfall and the rapid change in convection in the early morning should be monitored to evaluate and generalize the gas and particle exchange in a forest.