• Title/Summary/Keyword: Zero current switching

Search Result 603, Processing Time 0.028 seconds

Zero-Current Switching Two-Transformer Phase-Shifted Full-Bridge Converter using Voltage Ripple (전압 리플을 이용해 영전류 스위칭하는 두 개의 트랜스포머를 가지는 위상천이 풀-브릿지 컨버터)

  • Han, Sang-Kyoo;Moon, Gun-Woo;Youn, Myung-Joong;Yoon, Hyun-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.14-21
    • /
    • 2006
  • This paper presents a Zero-Current Switching(ZCS) two-transformer phase-shifted full-bridge(TTFB) converter using voltage ripple. The proposed converter provides Zero-Voltage Switching(ZVS) of leading leg switches and ZCS of lagging leg switches using voltage ripple. Especially, circulating current is reduced by ZCS operation and there are no additional components required for the soft switching of power switches. Furthermore, in case of light load, ZVS operation of lagging leg can be achieved. The operations, analysis and design consideration of proposed converter are presented. To verify the validity of the proposed converter, experimental results for a 410W (205[V], 2[A]) prototype are presented.

An Interleaved PWM Buck Converter with a Soft Switching Auxiliary Circuit (소프트 스위칭 형태의 보조 회로를 이용한 인터리브드 벅 컨버터)

  • Lee, Eui-Cheon;Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.547-555
    • /
    • 2013
  • This paper proposes the interleaved buck converter using a soft switching auxiliary circuit. In this scheme, an auxiliary circuit is added to the conventional interleaved buck converter and used to achieve soft-switching conditions for both the main switch and freewheeling diode. In addition, the switch in the auxiliary circuit operates under soft-switching conditions. Also, according to the input to output conditions, the main switch achieved zero-current-transition(ZCT) or zero-current & zero-voltage-transition(ZCZVT) at turn on. Thus, the proposed interleaved buck converter provides a higher efficiency. The basic operations, in this paper, are discussed and design guidelines are presented. The usefulness of the proposed converter is verified on a 200kHz, 180W prototype converter.

Three-Level ZVZCS DC/DC Converter using a Assistance Power Sources of the RailRoad Vehicles (철도차량 보조전원용 Three-Level ZVZCS DC/DC 컨버터)

  • Rho S.C.;Lim E.K.;Yang S.H.;Kim Y.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.880-885
    • /
    • 2003
  • Using a Assistance Power Sources of the Railroad Vehicles Three-Level ZVZCS DC/DC Converter is presented in this paper. The proposed three-Level DC/DC Converter Is to achieved zero voltage and zero current switching for the two Main switches. phase shift method is used a parastic capacitance by reverse recovery characteritics in a inner diode of the switching device. Also. using a diode second part of the Transformer by the simple auxiliary circuit for the achieved zero current switching of the Auxiliary switch. For the ZVZCS movement of the all switching devices is analyzed and verified under a 5kW, in the 100kHz switching frequency.

  • PDF

A Digital Self-Sustained Phase Shift Modulation Control Strategy for Full-Bridge LLC Resonant Converters

  • Zheng, Kai;Zhou, Dongfang;Li, Jianbing;Li, Li;Zhao, Yujing
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.915-924
    • /
    • 2016
  • A digital self-sustained phase shift modulation (DSSPSM) strategy that allows for good soft switching and dynamic response performance in the presence of step variations is presented in this paper. The working principle, soft switching characteristics, and voltage gain formulae of a LLC converter with DSSPSM have been provided separately. Furthermore, the method for realizing DSSPSM is proposed. Specifically, some key components of the proposed DSSPSM are carefully investigated, including a parameter variation analysis, the start-up process, and the zero-crossing capture of the resonant current. The simulation and experiment results verify the feasibility of the proposed control method. It is observed that the zero voltage switching of the switches and the zero current switching of the rectifier diodes can be easily realized in presence of step load variations.

A New partial resonant buck-boost AC-DC converter for high power factor (부분공진형 고역률 승강압 AC-DC 컨버터)

  • Shin, Hyun-Sik;Suh, Ki-Young;Kwon, Soon-Kurl;Kwak, Dong-Kurl;Lee, Hyun-Woo;Woo, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.512-515
    • /
    • 1994
  • This paper propose the high power factor and efficiency buck-boost AC-DC converter because the input current is made sinusoidal wave in single phase alternating current source. The proposed converter is able to minimize switching loss by the partial resonant switching which is for switching devices to operate the zero voltage switching (ZVS) or zero current switching(ZCS) without increasing their voltage and current stresses.

  • PDF

The considerations of a High Frequency DC-AC Inverter in a Short Range Wireless Power Transfer Applications (근거리 무선전력전송용 고주파 DC-AC 인버터 회로 고찰)

  • Park, Jae-Hyun;Kim, Chang-Sun
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.37-38
    • /
    • 2010
  • For MHz-class high frequency inverter in wireless power transfer applications, the voltage/current surges can be occurred in power stage when driving on the inverter. And also, the high-frequency oscillations can be produced at a high switching frequency due to the parasitic elements. The voltage and current stresses of the switching devices lead to the switching losses. The efficiency of the high frequency inverter will be reduced. And the inverter circuit with the sudden voltage and current fluctuations also generates the noise such as the EMI. Zero voltage, zero current switching technique can be used to reduce the switching loss and the noise. The high power density and high efficiency can be obtained. In this paper, the high-frequency inverter for short-range wireless power transfer applications was discussed. The feasible inverter circuit is analyzed in the circuit operating characteristics and the results are verified by the simulation.

  • PDF

Interleaved ZVS Resonant Converter with a Parallel-Series Connection

  • Lin, Bor-Ren;Shen, Sin-Jhih
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.528-537
    • /
    • 2012
  • This paper presents an interleaved resonant converter with a parallel-series transformer connection in order to achieve ripple current reduction at the output capacitor, zero voltage turn-on for the active switches, zero current turn-off for the rectifier diodes, less voltage stress on the rectifier diodes, and less current stress on the transformer primary windings. The primary windings of the two transformers are connected in parallel in order to share the input current and to reduce the root-mean-square (rms) current on the primary windings. The secondary windings of the two transformers are connected in series in order to ensure that the transformer primary currents are balanced. A full-wave diode rectifier is used at the output side to clamp the voltage stress of the rectifier diode at the output voltage. Two circuit modules are operated with the interleaved PWM scheme so that the input and output ripple currents are reduced. Based on the resonant behavior, all of the active switches are turned on under zero voltage switching (ZVS), and the rectifier diodes are turned off under zero current switching (ZCS) if the operating switching frequency is less than the series resonant frequency. Finally, experiments with a 1kW prototype are described to verify the effectiveness of the proposed converter.

A Main Power Supply for Railway Vehicles using 3-level converters (3레벨 컨버터를 이용한 철도차량용 주 전력변환장치)

  • Rho Sung-Chan;Kim Yoon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.646-652
    • /
    • 2003
  • AS a main Power Supply of the Railroad Vehicles, a three-Level ZVZCS DC/DC Converter is proposed in this paper. The proposed three-Level DC/DC Converter achieves zero voltage and zero current switching for the main switches. Its attribute is that the voltage across the switches is half the value of the input voltage. Also. using a diode and secondary side of the transformer, and simple auxiliary circuits it achieves zero current switching of the auxiliary switches. The principle operation and simulation results are included.

  • PDF

Soft Switching Forward Converter Using Non-Dissipative Snubber (무손실 스너버 적용 소프트 스위칭 Forward 컨버터)

  • 김은수;김태진;최해영;조기연;김윤호
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.256-260
    • /
    • 1997
  • To achieve high efficiency in high power and high frequency applications, reduction of switching losses and noise is very important. In this paper, an improved soft switching forward converter is proposed. The proposed converter is constructed by using non-dissipative snubbers in parallel with the main switch and output diode of the conventional forward converter. Due to the use of the non-dissipative snubbers in the primary and secondary, the proposed converter achieves zero-voltage and zero-current switching for all switching devices without switching losses and output diode recovery losses. The complete operating principles, theoritical analysis, experimental results will be presented.

  • PDF

Active-Clamp AC-DC Converter with Direct Power Conversion (직접전력변환 방식을 이용한 능동 클램프 AC-DC 컨버터)

  • Cho, Yong-Won;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.230-237
    • /
    • 2012
  • This paper proposes an active-clamp ac-dc converter with direct power conversion that has a simple structure and achieves high efficiency. The proposed converter is derived by integrating the step-down ac chopper and the output-voltage doubler. The proposed converter provides direct ac-dc conversion and dc output voltage without using any full-bridge diode rectifier. The step-down ac chopper using an active-clamp mechanism serves to clamp the voltage spike across the main switches and provides zero-voltage turn-on switching. The resonant-current path formed by the leakage inductance of the transformer and the resonant capacitor of the output-voltage doubler achieves the zero-current turn-off switching of the output diodes. The operation principle of the converter is analyzed and verified. A 500W prototype is implemented to show the performance of the proposed converter. The prototype provides maximum efficiency of 95.1% at the full load.