• 제목/요약/키워드: Zero Error

검색결과 761건 처리시간 0.027초

Blind Algorithms with Decision Feedback based on Zero-Error Probability for Constant Modulus Errors

  • 김남용;강성진
    • 한국통신학회논문지
    • /
    • 제36권12C호
    • /
    • pp.753-758
    • /
    • 2011
  • The constant modulus algorithm (CMA) widely used in blind equalization applications minimizes the averaged power of constant modulus error (CME) defined as the difference between an instant output power and a constant modulus. In this paper, a decision feedback version of the linear blind algorithm based on maximization of the zero-error probability for CME is proposed. The Gaussian kernel of the maximum zero-error criterion is analyzed to have the property to cut out excessive CMEs that may be induced from severely distorted channel characteristics. Decision feedback approach to the maximum zero-error criterion for CME is developed based on the characteristic that the Gaussian kernel suppresses the outliers and this prevents error propagation to some extent. Compared to the linear algorithm based on maximum zero-error probability for CME in the simulation of blind equalization environments, the proposed decision feedback version has superior performance enhancement particularly in cases of severe channel distortions.

비-가우시안 잡음하의 적응 시스템을 위한 바이어스된 영-오차확률 (Biased Zero-Error Probability for Adaptive Systems under Non-Gaussian Noise)

  • 김남용
    • 인터넷정보학회논문지
    • /
    • 제14권1호
    • /
    • pp.9-14
    • /
    • 2013
  • 영-오차확률 성능 기준은 오차 샘플들이 직류 바이어스 잡음의 영향을 받을 때 적응 시스템에 사용되기에는 제약이 따른다. 이 논문에서는 바이어스 변수를 오차 분포에 도입하고 바이어스된 오차확률에서 오차를 0 으로 하여 새로운 성능 기준인 바이어스된 영-오차확률을 제안하였다. 또한, 확장 필터 구조를 기반으로 제안된 성능 기준을 최대화 함으로써 적응 알고리듬을 도출하였다. 통신 채널 등화에 대한 시뮬레이션 결과로부터 제안된 성능기준에 기반한 이 알고리듬이 강한 충격성 잡음과 직류-바이어스 잡음의 환경에서 동요 없이 오차 샘플들을 0 으로 집중시키는 성능을 보였다.

ERROR BOUNDS FOR SUMPSONS QUADRATURE THROUGH ZERO MEAN GEUSSIAN WITH COVARIANCE

  • Hong, Bum-Il;Choi, Sung-Hee;Hahm, Nahm-Woo
    • 대한수학회논문집
    • /
    • 제16권4호
    • /
    • pp.691-701
    • /
    • 2001
  • We computed zero mean Gaussian of average error bounds pf Simpsons quadrature with convariances in [2]. In this paper, we compute zero mean Gaussian of average error bounds between Simpsons quadrature and composite Simpsons quadra-ture on four consecutive subintervals. The reason why we compute these on subintervals is because these results enable us to compute a posteriori error bounds on the whole interval in the later paper.

  • PDF

BOUNDS OF ZERO MEAN GAUSSIAN WITH COVARIANCE FOR AVERAGE ERROR OF TRAPEZOIDAL RULE

  • Hong, Bum-Il;Choi, Sung-Hee;Hahm, Nahm-Woo
    • Journal of applied mathematics & informatics
    • /
    • 제8권1호
    • /
    • pp.231-242
    • /
    • 2001
  • We showed in [2] that if r≤2, zero mean Gaussian of average error of the Trapezoidal rule is proportional to h/sub i//sup 2r+3/ on the interval [0,1]. In this paper, if r≥3, we show that zero mean Gaussian of average error of the Trapezoidal rule is bounded by Ch⁴/sub i/h⁴/sub j/.

Maximization of Zero-Error Probability for Adaptive Channel Equalization

  • Kim, Nam-Yong;Jeong, Kyu-Hwa;Yang, Liuqing
    • Journal of Communications and Networks
    • /
    • 제12권5호
    • /
    • pp.459-465
    • /
    • 2010
  • A new blind equalization algorithm that is based on maximizing the probability that the constant modulus errors concentrate near zero is proposed. The cost function of the proposed algorithm is to maximize the probability that the equalizer output power is equal to the constant modulus of the transmitted symbols. Two blind information-theoretic learning (ITL) algorithms based on constant modulus error signals are also introduced: One for minimizing the Euclidean probability density function distance and the other for minimizing the constant modulus error entropy. The relations between the algorithms and their characteristics are investigated, and their performance is compared and analyzed through simulations in multi-path channel environments. The proposed algorithm has a lower computational complexity and a faster convergence speed than the other ITL algorithms that are based on a constant modulus error. The error samples of the proposed blind algorithm exhibit more concentrated density functions and superior error rate performance in severe multi-path channel environments when compared with the other algorithms.

비-가우시안 잡음하의 적응 시스템을 위한 바이어스된 영-오차확률의 반복적 추정법 (Recursive Estimation of Biased Zero-Error Probability for Adaptive Systems under Non-Gaussian Noise)

  • 김남용
    • 인터넷정보학회논문지
    • /
    • 제17권1호
    • /
    • pp.1-6
    • /
    • 2016
  • 바이어스된 영-오차확률 (biased zero-error probability)과 이에 관련된 알고리듬은 매 반복시간마다 합산과정을 지니고 있어 많은 계산상의 부담을 요구한다. 이 논문에서는 바이어스된 영-오차확률에 반복적 접근법을 적용한 알고리듬을 제안하였고 천해역 통신채널과 충격성 잡음 및 바이어스된 가우시안 잡음이 혼재한 실험 환경에서 성능을 비교하였다. 샘플 사이즈에 비례하는 계산 복잡도를 지닌 기존 알고리듬과 달리 제안한 반복적 방식은 샘플 사이즈와 무관하여 계산량의 부담을 크게 줄였다. 이러한 계산효율 특성을 지닌 제안한 알고리듬은 블록 처리방식의 기존 알고리듬과 비교하여 다중경로 페이딩, 바이어스된 잡음 및 충격성 잡음에 대한 강인성에서 동일한 성능을 나타냈다.

영확률 최대화에 근거한 효율적인 적응 알고리듬 (Efficient Adaptive Algorithms Based on Zero-Error Probability Maximization)

  • 김남용
    • 한국통신학회논문지
    • /
    • 제39A권5호
    • /
    • pp.237-243
    • /
    • 2014
  • 이 논문에서는, 영확률을 최대화 (maximum zero-error probability, MZEP) 하도록 설계된 알고리듬에서 가중치 갱신에 쓰이는 기존의 블록 처리 방식의 합산 연산을 대신하여, 다음 기울기 계산에 현재 계산된 기울기를 활용할 수 있는 효율적인 가중치 갱신 계산 방식을 제안하였다. 실험 결과로부터, 제안한 방식은 원래의 MZEP 와 동일한 성능을 나타내면서도 오차 버퍼가 불필요하여 시스템의 복잡도를 감소시키며 연산 시간을 현저히 줄일 수 있다. 또한 제안한 알고리듬은 오차 엔트로피 (error-entropy)를 최소화하도록 설계된 알고리듬보다 우수한 수렴 속도를 지닌다.

A Feasible Approach for the Unified PID Position Controller Including Zero-Phase Error Tracking Performance for Direct Drive Rotation Motor

  • Kim, Joohn-Sheok
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.74-84
    • /
    • 2009
  • The design and implementation of a high performance PID (Proportional Integral & Differential) style controller with zero-phase error tracking property is considered in this article. Unlike a ball screw driven system, the controller in a direct drive system should provide a high level of tracking performance while avoiding the problems due to the absence of the gear system. The stiff mechanical element in a direct drive system allows high precise positioning capability, but relatively high tracking ability with minimal position error is required. In this work, a feasible position controller named 'Unified PID controller' is presented. It will be shown that the function of the closed position loop can be designed into unity gain system in continuous time domain to provide minimal position error. The focus of this work is in two areas. First, easy gain tunable PID position controller without speed control loop is designed in order to construct feasible high performance drive system. Second, a simple but powerful zero phase error tracking strategy using the pre-designed function of the main control loop is presented for minimal tracking error in all operating conditions. Experimental results with a s-curve based position pattern commonly used in industrial field demonstrate the feasibility and effective performance of the approach.

추종 오차를 최소화하는 극-영점 배치 자기 동조 제어기 (Pole-zero placement self-tuning controller minimizing tracking error)

  • 한규정;이종용;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.179-181
    • /
    • 1987
  • In this paper, a self-tuning controller design is proposed by using pole-zero placement method and considering a system time delay. To got better tracking for the generalized self-tuning controller, pole placement method for the closed loop system and zero placement method for the error transfer function are Introduced. The proposed method shows better efficiency than pole placement method for minimizing tracking error. Simulation gives good results in tie reference signal tracking.

  • PDF

ASYMPTOTIC ERROR ANALYSIS OF k-FOLD PSEUDO-NEWTON'S METHOD LOCATING A SIMPLE ZERO

  • Kim, Young Ik
    • 충청수학회지
    • /
    • 제21권4호
    • /
    • pp.483-492
    • /
    • 2008
  • The k-fold pseudo-Newton's method is proposed and its convergence behavior is investigated near a simple zero. The order of convergence is proven to be at least k + 2. The asymptotic error constant is explicitly given in terms of k and the corresponding simple zero. High-precison numerical results are successfully implemented via Mathematica and illustrated for various examples.

  • PDF