• 제목/요약/키워드: Zernike Polynomial Surface

검색결과 11건 처리시간 0.022초

Surface Error Generation of Freeform Mirror Based on Zernike Polynomial for Optical Performance Prediction

  • Lee, Sunwoo;Park, Woojin;Han, Jimin;Ahn, Hojae;Kim, Yunjong;Lee, Dae-Hee;Kim, Geon Hee;Pak, Soojong
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.67.2-67.2
    • /
    • 2020
  • Not only the magnitude of the mirror surface error, the pattern matters as it produces certain aberrations. In particular, the surface error of the freeform mirrors, which are optimized to eliminate specific aberrations, might show much higher sensitivity in optical performance. Therefore, we analyze the mirror surface error with Zernike polynomials with the goal of generating a realistic error surface. We investigate the surface error of the freeform mirror fabricated by diamond turning machine to analyze the realistic tendency of the error. The surface error with 0.22 ㎛ root-mean-square value is fitted to the Zernike terms using the incremental fitting method, which increases the number of the fitting coefficients through steps. Furthermore, optical performance via surface error pattern based on Zernike terms is studied to see the influences of each term. With this study, realistic error surface generation may allow higher accuracy not only for the feasibility test but also for all tests and predictions using optical simulations.

  • PDF

파면굴절력 교정을 위한 자유형상 누진가입도렌즈 개발 (Development of Free-form PALs for Correcting Wavefront Refraction)

  • 박상배;정미숙
    • 한국정밀공학회지
    • /
    • 제27권2호
    • /
    • pp.50-59
    • /
    • 2010
  • In this paper, two kind of free-form progressive addition lenses (PALs) were designed with Zernike polynomial surface and anatomically accurate finite presbyopic schematic eyes which have aspheric cornea, aspheric GRIN crystalline lens, aspheric retina, and Gaussian apodization factor. Geometrical and diffraction MTFs were used for the optimization process in sequence. 5th orders of Zernike polynomials were used for the evaluation of progression zones of the two examples. The target MTF was set as 0.22 at 100 lp/mm which satisfies the standard visual resolution. These examples were fabricated with a CNC diamond turning machine controlled by slow tool servo (STS). After polishing process, the wavefront aberrations were measured with a laser interferometer on the ten test points across the progression zones and then compared with three current commercially available PALs on the optical performance. Astigmatic aberrations of the examples are very lower than the three selected PALs and have more increased stabilized progressive intermediate zones and near zones. It is expected to give better clear and comfortable distance, intermediate and near visions than other conventional PALs and to improve the adaptability of presbyopic patients to PALs.

다이아몬드 선삭 가공기의 진단을 위한 대영역 표면 해석 (Very Large Scale Analysis of Surfaces for Diamond Turned Machine Diagnosis)

  • 김승우;장인철;김동식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.687-691
    • /
    • 2000
  • Diamond turning machines for manufacture of precision optics require deliberate diagnosis to ensure that all the machine elements are properly operating, kinematically, dynamically and thermally, to produce demanded work qualities. One effective way is to directly inspect topographical features of work surfaces that have been carefully generated with prescribed machining conditions intended to exaggerate faulty consequences of any ill-operating machine elements. In this research, a very-large-scale Phase measuring interferometric system that has been developed for years at Korea Advanced Institute of Science and Technology is used to fulfill the metrological requirements fur the surface analysis. A special stitching technique is used to extend the measuring range, which integrates all the patches that are separately sampled over the whole surface while moving the stage. Then, the measured surface profile is analyzed to releated the machine error sources. For this, zernike polynomial fitting is used together with the wavelet filter and the fourier transform. Experimental results showed that the suggested technique in this study is very effective in diagnosing actual diamond turning machines

  • PDF

Q-Polynomial을 이용한 Korsch 망원경의 비구면 공차 분석 방법 연구 (Study of the Analysis Method for the Aspherical Tolerance of a Korsch Telescope Using a Q Polynomial)

  • 전원균;이한율;이상민;김기환;박승한;정미숙
    • 한국광학회지
    • /
    • 제31권6호
    • /
    • pp.328-333
    • /
    • 2020
  • 본 논문에서는 Q-polynomial을 이용한 Korsch 망원경의 비구면 반사경 공차 분석을 진행하였다. 고해상도 인공위성의 비구면 반사경은 고정밀 제작이 요구되어 품질을 평가하기 위한 공차 분석이 중요하다. 따라서 비구면을 각 계수항들이 독립적인 Q-polynomial로 표현하고 Korsch 망원경 광학계의 공차 분석을 진행하였다. 또한 비구면 반사경에 형상 오차를 Zernike fringe sag로 부여하여 공차 분석하고 두 결과를 비교하여 Q-polynomial으로도 공차 분석할 수 있음을 확인하였다.

Beer-Lambert 법칙을 적용한 레이저 열원 프로파일 모델링 및 레이저무기용 반사경의 열변형 해석을 통한 구조-열-광학 성능 연구 (A Study on Structural-Thermal-Optical Performance through Laser Heat Source Profile Modeling Using Beer-Lambert's Law and Thermal Deformation Analysis of the Mirror for Laser Weapon System)

  • 홍대기
    • 항공우주시스템공학회지
    • /
    • 제17권4호
    • /
    • pp.18-27
    • /
    • 2023
  • 본 논문에서는 열해석의 하중조건으로 레이저 열원을 설정하여 반사경의 구조-열-광학 성능 분석을 수행하였다. 레이저 열원 모델은 가우시안 빔을 바탕으로 반투명한 소재를 고려한 Beer-Lambert 법칙을 적용하여 하중조건으로 선정하였으며, 반사경만의 성능 분석을 위하여 기구부는 고려하지 않았다. 열변형해석을 수행하여 반사경 표면의 온도 변화로 인한 열응력과 열변형 데이터를 얻었다. 열변형에 의한 반사경 표면의 변위 데이터를 Zernike 다항식에 피팅하여 파면오차를 계산하였으며, 이를 통해 고에너지 레이저가 반사경으로 입사될 때 반사경의 광학 성능을 예측할 수 있었다.

Error-immune Algorithm for Absolute Testing of Rotationally Asymmetric Surface Deviation

  • Zhang, Yanwei;Su, Dongqi;Li, Le;Sui, Yongxin;Yang, Huaijiang
    • Journal of the Optical Society of Korea
    • /
    • 제18권4호
    • /
    • pp.335-340
    • /
    • 2014
  • Based on Zernike polynomial fitting, we propose an algorithm believed to be new for interferometric measurements of rotationally asymmetric surface deviation of optics. This method tests and calculates each angular surface by choosing specified rotation angles with lowest error. The entire figure can be obtained by superimposing these sub-surfaces. Simulation and experiment studies for verifying the proposed algorithm are presented. The results show that the accuracy of the proposed method is higher than single-rotation algorithm and almost comparable to the rotation-averaging algorithm with fewer rotation measurements. The new algorithm can achieve a balance between the efficiency and accuracy.

Optimal Design of a Coudé Mirror Assembly for a 1-m Class Ground Telescope

  • Jaehyun Lee;Hyug-Gyo Rhee;Eui Seung Son;Jeon Geon Kang;Ji-Young Jeong;Pilseong Kang
    • Current Optics and Photonics
    • /
    • 제7권4호
    • /
    • pp.435-442
    • /
    • 2023
  • These days, the size of a reflective telescope has been increasing for astronomical observation. An additional optical system usually assists a large ground telescope for image analysis or the compensation of air turbulence. To guide collimated light to the external optical system through a designated path, a coudé mirror is usually adopted. Including a collimator, a coudé mirror of a ground telescope is affected by gravity, depending on the telescope's pointing direction. The mirror surface is deformed by the weight of the mirror itself and its mount, which deteriorates the optical performance. In this research, we propose an optimization method for the coudé mirror assembly for a 1-m class ground telescope that minimizes the gravitational surface error (SFE). Here the mirror support positions and the sizes of the mount structure are optimized using finite element analysis and the response surface optimization method in both the horizontal and vertical directions, considering the telescope's altitude angle. Throughout the whole design process, the coefficients of the Zernike polynomials are calculated and their amplitude changes are monitored to determine the optimal design parameters. At the same time, the design budgets for the thermal SFE and the mass and size of the mount are reflected in the study.

광학거울 시스템의 지지구조 설계를 위한 라그랑지 방정식과 최적화 기법 적용에 의한 효과분석 (The Effectiveness Analysis Due to the Use of Lagrange Equation and the Optimization Technology for Design of the Support Structure of the Optical Mirror System)

  • 김학인;남병욱;김광태;김병운
    • 한국군사과학기술학회지
    • /
    • 제21권3호
    • /
    • pp.264-278
    • /
    • 2018
  • The support structure of an optical mirror system is the one of the important design elements because the one affects the optical aberrations of the mirror surface. In this paper, Lagrange equation of the moving body of the fast steering mirror system(FSM) has been formulated to use with optimization design. Major goals for optimization are to assign the reasonably flexible stiffness to the structure and to enhance the first natural frequency of the mirror and support system in aid of more affordable control bandwidth for the FSM. Pursuing these purposes with the proposed method, the finite element analysis(FEA), optimization technique and the Zernike polynomial estimation are used for the design effects. It is concluded that the proposed approach for design well guides toward the desired design goals with regards to both structural and optical performances.

우주환경에서 대형 반사경의 습기 방출에 의한 형상 변화 예측방법 (Prediction Method for Moisture-release Surface Deformation of a Large Mirror in the Space Environment)

  • 송인웅;양호순;김학용;김성희;이회윤;김석환
    • 한국광학회지
    • /
    • 제29권4호
    • /
    • pp.166-172
    • /
    • 2018
  • 본 논문에서는 우주의 진공환경에서 반사경 코팅이 흡수한 습기를 방출하면서 나타나는 경면 형상의 변화를 예측하기 위한 새로운 방법론을 제안한다. 직경 50 mm, 두께 1.03 mm의 원형 시편과 간섭계를 통해 진공환경에서 나타나는 시편 형상 변화량을 측정하고 제르니케 프린지 다항식(Zernike fringe polynomial) 곡률항으로 나타내었다. 그 결과 습기 방출에 따른 코팅 스트레스는 152.7 Mpa로 계산되었다. 계산된 스트레스는 1.25 mm 두께 시편의 수치모사 모델에 적용하여 변화된 형상의 곡률항을 측정결과의 표준편차 이내($78.9{\pm}5.9nm$)로 예측할 수 있음을 검증하였다. 이 방법론을 2019년에 발사 예정인 차세대중형위성의 직경 600 mm 쌍곡면경에 적용, 습기 방출에 의한 경면 형상 변화를 계산하여 반사경의 초점거리가 약 $2.005{\mu}m$ 만큼 ?아짐을 예측하였다. 초점거리 변화는 광학 탑재체의 MTF를 한계공간주파수(Nyquist frequency)에서 2.3% 가량 낮추지만, 요구 사양을 만족하여 우주에서도 문제없이 운용 가능함을 확인하였다.

Research on Thermal Refocusing System of High-resolution Space Camera

  • Li, Weiyan;Lv, Qunbo;Wang, Jianwei;Zhao, Na;Tan, Zheng;Pei, Linlin
    • Current Optics and Photonics
    • /
    • 제6권1호
    • /
    • pp.69-78
    • /
    • 2022
  • A high-resolution camera is a precise optical system. Its vibrations during transportation and launch, together with changes in temperature and gravity field in orbit, lead to different degrees of defocus of the camera. Thermal refocusing is one of the solutions to the problems related to in-orbit defocusing, but there are few relevant thermal refocusing mathematical models for systematic analysis and research. Therefore, to further research thermal refocusing systems by using the development of a high-resolution micro-nano satellite (CX6-02) super-resolution camera as an example, we established a thermal refocusing mathematical model based on the thermal elasticity theory on the basis of the secondary mirror position. The detailed design of the thermal refocusing system was carried out under the guidance of the mathematical model. Through optical-mechanical-thermal integration analysis and Zernike polynomial calculation, we found that the data error obtained was about 1%, and deformation in the secondary mirror surface conformed to the optical index, indicating the accuracy and reliability of the thermal refocusing mathematical model. In the final ground test, the thermal vacuum experimental verification data and in-orbit imaging results showed that the thermal refocusing system is consistent with the experimental data, and the performance is stable, which provides theoretical and technical support for the future development of a thermal refocusing space camera.