• Title/Summary/Keyword: Zeolite A,

Search Result 1,062, Processing Time 0.035 seconds

Studies on Artificial Cultivation of Pleurotus eryngii (De Canolle ex Fries) Quel. (큰느타리(Pleurotus eryngii)의 인공재배에 관한 연구)

  • Lee, Dae-Jin;Kim, Kwang-Po;Lee, Byung-Eui
    • The Korean Journal of Mycology
    • /
    • v.31 no.3
    • /
    • pp.192-199
    • /
    • 2003
  • This study was carried out to investigate the artificial cultivation of Pleurotus eryngii on the optimal medium vessel, periods of cultivation and the optimal method of pinheading for both yield and quality of fruiting body were also performed. The optimal composition of sawdust medium in polypropylene(PP) bottle was combination of sawdust(70%) and corncob(30%) but increased amount of corncob delayed the period of mycelial growth. The mycelial growth and the yield of fruiting body in the medium with beat pulp were worse than that without beat pulp. The optimal composition of nutrients for both yield and quality of fruit body tuned out to be a combination of rice bran(12%), wheat bran(12%) and cottonseed cake(6%). Additions of zeolite, shell lime and bean curd dregs were not effective in mycelial growth and yield of fruit body. When testing size of PP bottle for cultivation, the larger of bottle mouth is, the more pinheading number found, but the number of available fruit body is not significantly different. The culture in $1100\;ml-{\phi}75\;mm$ bottle is the best in the yield and quality of fruit body than those in $555\;ml-{\phi}50\;mm,\;850\;ml-{\phi}58\;mm,\;850\;ml-{\phi}65\;mm\;and\;1100\;ml-{\phi}65\;mm$ bottle. Using the PP bag for cultivation, a square shaped bag was better than a round shaped and black square shaped in mycelial growth and yield of fruit body. The most suitable period of incubation was 35 days after inoculation at $22{\pm}2^{\circ}C$. When the incubation periods was decreased less than 35 days, the pileus formation and yields were very bad but a pinheading condition looked similar, For an optimal pinheading, turning upside down was better than standing and covering.

A Review on the Recycling of the Concrete Waste Generate from the Decommissioning of Nuclear Power Plants (원전 해체 콘크리트 폐기물의 재활용에 대한 고찰)

  • Jeon, Ji-Hun;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.285-297
    • /
    • 2021
  • Globally, nuclear-decommissioning facilities have been increased in number, and thereby hundreds of thousands of wastes, such as concrete, soil, and metal, have been generated. For this reason, there have been numerous efforts and researches on the development of technology for volume reduction and recycling of solid radioactive wastes, and this study reviewed and examined thoroughly such previous studies. The waste concrete powder is rehydrated by other processes such as grinding and sintering, and the processes rendered aluminate (C3A), C4AF, C3S, and ��-C2S, which are the significant compounds controlling the hydration reaction of concrete and the compressive strength of the solidified matrix. The review of the previous studies confirmed that waste concretes could be used as recycling cement, but there remain problems with the decreasing strength of solidified matrix due to mingling with aggregates. There have been further efforts to improve the performance of recycling concrete via mixing with reactive agents using industrial by-products, such as blast furnace slag and fly ash. As a result, the compressive strength of the solidified matrix was proved to be enhanced. On the contrary, there have been few kinds of researches on manufacturing recycled concretes using soil wastes. Illite and zeolite in soil waste show the high adsorption capacity on radioactive nuclides, and they can be recycled as solidification agents. If the soil wastes are recycled as much as possible, the volume of wastes generated from the decommissioning of nuclear power plants (NPPs) is not only significantly reduced, but collateral benefits also are received because radioactive wastes are safely disposed of by solidification agents made from such soil wastes. Thus, it is required to study the production of non-sintered cement using clay minerals in soil wastes. This paper reviewed related domestic and foreign researches to consider the sustainable recycling of concrete waste from NPPs as recycling cement and utilizing clay minerals in soil waste to produce unsintered cement.

Study on new casing materials of Agaricus bisporus (양송이의 새로운 복토재료에 관한 연구)

  • Kim, Yong-Gyun;Lee, Byung-Joo;Lee, Sun-Gye;Lee, Byung-Eui
    • Journal of Mushroom
    • /
    • v.16 no.3
    • /
    • pp.147-154
    • /
    • 2018
  • This study was aimed to improve the productivity and income of mushroom farming by developing a new casing material as a substitute for clay loam casing soil, which is becoming more difficult to acquire. When the new casing materials were used for the stable production of button mushroom (Agaricus bisporus), a 1:1 mixture of clay loam and button mushroom media obtained after harvest supported 13% greater mycelial growth ($32.0kg/3.3m^2$). This material was better than clay loam soil in preventing contamination with environmental compounds and pests. The use of an inexpensive 1:1 mixture of peat moss and coco peat resulted superior mycelial growth with 4% better yield ($32.9kg/3.3m^2$) compared with conventional clay loam soil. Advantages of these casing materials included ready availability and improved productivity. Mixtures of peat moss + coco peat + zeolite (50%:30%:20%) and coco peat + coal ash (75%:25%) could substitute for conventional casing soil. Additionally, the novel mixtures containing material obtained after cultivation might be used to produce organic fertilizer.

Quality Changes in Oyster Mushrooms during Modified Atmosphere Storage as Affected by Temperatures and Packaging Materials (저장 온도와 포장재에 따른 느타리버섯의 MA 저장 중 품질변화)

  • Choi, Mi-Hee;Kim, Gun-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1079-1085
    • /
    • 2003
  • Modified atmosphere packaging was applied to oyster mushrooms (Pleurotus ostreatus) to study the effect of storage temperatures and packaging materialso. Whole mushrooms (200g) were package with polyethylene film $(PE,\;60{\mu}m\;thickness)$, ethylene vinyl acetate (EVA), or ceramic film (containing 5% zeolite) and stored at 0, 5, 10 and $20^{\circ}C$. Weight loss, color, firmness, gas composition $(O_2,\;CO_2)$ inside the film package and ethanol content in the tissue of MA packaged mushrooms were examined. Mushroom that were packed unwrapped in a conventional hardboard box (2 kg) lost marketability at a very early stage of storage due to weight loss, shrinkage, browning, and spore formation. During storage, film packaging prevented or retarded the deterioration of the mushrooms in the aspects of appearance, texture, and discoloration. Firmness slightly decreased with storage time. Total color difference was much higher in the control than in the film-packaged mushroom and rapidly increased at the early of storage. Correlation analysis showed a high correlation between total color difference and b values. These results were characterized by the reduced respiration rate resulting from elevated carbon dioxide and reduced oxygen levels in the package. At all storage temperatures, ethanol content in the tissue increased slightly at the early part of storage and rose considerably towards the end of the storage period. Ethanol content in the oyster mushrooms was higher in the stipe than in pileus tissues. The shelf life of the oyster mushrooms was about $8{\sim}11$ days at $0^{\circ}C$, about $4{\sim}6$ day at $5^{\circ}C$, about $2{\sim}3$ days at $10^{\circ}C$, and about $1{\sim}2$ days at $20^{\circ}C$.

Applied-Mineralogical Characterization and Assessment of Some Domestic Bentonites (I): Mineral Composition and Characteristics, Cation Exchange Properties, and Their Relationships (국내산 벤토나이트에 대한 응용광물학적 특성 평가 (I): 광물 조성 및 특징과 양이온 교환특성과의 연계성)

  • 노진환
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.329-344
    • /
    • 2002
  • Mineralogical and chemical characterization of some domestic bentonites, such as quantitative XRD analysis, chemical leaching experiments, pH and CEC determinations, were done without any separation procedures to understand their relationships among mineral composition, characteristics, and cation exchange properties. XRD quantification results based on Rietveld method reveal that the bentonites contain totally more than 25 wt% of impurities, such as zeolites, opal-CT, and feldspars, in addition to montmorillonite ranging 30~75 wt%. Cation exchange properties of the zeolitic bentonites are deeply affected by the content of zeolites identified as clinoptilolite-heulandite series. Clinoptilolite is common in the silicic bentonites with lighter color. and occurs closely in association with opal-CT. Ca is mostly the dominant exchangeable cation, but some zeolitic bentonites have K as a major exchangeable cation, The values of cation exchange capacity (CEC) determined by Methylene Blue method are comparatively low and have roughly a linear relationship with the montmorillonite content of the bentonite, though the correlated data tend to be rather dispersed. Compared to this, the CEC determined by Ammonium Acetate method, i.e.‘Total CEC’, has much higher values (50~115 meq/100 g). The differences between those CEC values are much greater in zeolitic bentonites, which obviously indicates the CEC increase affected by zeolite. Other impurities such as opal-CT and feldspars seem to affect insignificantly on the CEC of bentonites. When dispersed in distilled water, the pH of bentonites roughly tends to increase up to 9.3 with increasing the alkali abundance, especially Na, in exchangeable cation composition. However, some bentonites exhibit lower pH (5~6) so as to regard as ‘acid clay’. This may be due to the presence of $H^{+}$ in part as an exchangeable cation in the layer site of montmorillonite. All the works of this study ultimately suggest that an assesment of domestic bentonites in grade and quality should be accomplished through the quantitative XRD analysis and the ‘Total CEC’measurement.

Identification of Antagonistic Bacteria, Pseudomonas aurantiaca YC4963 to Colletotri­chum orbiculare Causing Anthracnose of Cucumber and Production of the Antibiotic Phenazine-l-carboxylic acid (Colletotrichum orbiculare에 대한 길항세균 Pseudomonas aurantiaca YC4963의 분리 동정 및 항균물질 Phenazine-1-carboxylic acid의 생산)

  • Chae Hee-Jung;Kim Rumi;Moon Surk-Sik;Ahn Jong-Woong;Chung Young-Ryun
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.342-347
    • /
    • 2004
  • A bacterial strain YC4963 with antifungal activity against Colletotrichum orbiculare, a causal organism of cucumber anthracnose was isolated from the rhizosphere soil of Siegesbeckia pubescens Makino in Korea. Based on physiological and biochemical characteristics and 16S ribosomal DNA sequence analysis, the bac­terial strain was identified as Pseudomonas aurantiaca. The bacteria also inhibited mycelial growth of several plant fungal pathogens such as Botrytis cinerea, Fusarium oxysporum and Rhizoctonia solani on PDA and 0.1 TSA media. The antifungal activity was found from the culture filtrate of this isolate and the active compound was quantitatively bound to XAD adsorption resin. The antibiotic compound was purified and identified as phenazine-l-carboxylic acid on the basis of combined spectral and chemical analyses data. This is the first report on the production of phenazine-l-carboxylic acid by Pseudomonas aurantiaca.

Optimization of Culture Conditions and Encapsulation of Lactobacillus fermentum YL-3 for Probiotics (가금류 생균제 개발을 위한 Lactobacillus fermentum YL-3의 배양조건 최적화 및 캡슐화)

  • Kim, Kyong;Jang, Keum-Il;Kim, Chung-Ho;Kim, Kwang-Yup
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.255-262
    • /
    • 2002
  • This experiment was performed to improve the stability of Lactobacillus fermentum YL-3 as a poultry probiotics. The culture conditions that improve acid tolerance of L. fermentum YL-3 were investigated by changing several factors such as medium composition, temperature, anaerobic incubation and culture time. Also, L. fermentum YL-3 was encapsulated with alginate, calcium chloride and chitosan. The stable culture conditions of L. fermentum YL-3 were obtained in anaerobic incubation using MRS media without tween 80 for 20 hour at $42^{\circ}C$. The capsule after treatment with 1% chitosan was formed close membrane by a bridge bond. Immobilization of L. fermentum YL-3 in capsule was observed by confocal laser scanning microscopy, and cell viability was $2.0{\times}10^9\;CFU/g$ above the average. L. fermentum YL-3 capsule after acid treated at pH 2.0 for 3 hour survived about 40%, but those encapsulated with 1% chitosan survived about 65%. Survival rate of capsule stored at room temperature decreased about $2{\sim}3$ log cycle during 3 weeks, but viability of capsule stored at $4^{\circ}C$ during 3 weeks maintained almost $10^8\;CFU/g$ levels.

The Effects of Ethylene Absorbent on the Quality of 'Fuyu' Persimmon Fruits in MA Package (MA 포장내 에틸렌 흡착 처리가 단감 '부유'의 선도유지에 미치는 영향)

  • Ahn, Gwang-Hwan;Ha, Yeong-Le;Shon, Gil-Man;Song, Won-Doo;Seo, Kwang-Ki;Choi, Seong-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1278-1284
    • /
    • 2000
  • The study was performed to elucidate the effects of ethylene-absorbent on the quality of 'Fuyu' persimmon fruits in the MA package. Five persimmons were packed in a MA package film (low density polyethylene, 0.055 mm film thickness), and stored at $-0.5^{\circ}C$ for 60 days. Two persimmons were repacked in a MA package with or without ethylene absorbent $(1\;M\;KMnO_4+zeolite)$ and stored at $-0.5^{\circ}C$. Ten days later, these packages was moved to $2^{\circ}C$ or $25^{\circ}C$ storage room to examine the effect of the ethylene-absorbent on the quality of the fruits. Ethylene removal by enclosed ethylene absorbent in MA packaging reduced the rate of fruit respiration at $25^{\circ}C$, so that $O_2$ and $CO_2$ concentration in packing were maintained higher and lower, respectively, compared to control. These effects were not observed, however, in $2^{\circ}C$ post-storage. Fruit firmness and sugar composition were also influenced by ethylene absorbent, showing more delayed flesh softening and higher sucrose concentration in ethylene absorbent treated fruits than control. But ethylene-absorbent treatment lowered glucose and fructose concentration. That shows that ethylene could influence on sugar composition by inhibiting sucrose inversion to glucose and fructose. The production of ethanol and acetaldehyde was reduced by ethylene removal, but the effect was not so high as other quality indices.

  • PDF

High-Temperature Cesium (Cs) Retention Ability of Cs-Exchanged Birnessite (세슘(Cs)으로 이온 교환된 버네사이트의 고온에서의 Cs 고정 능력)

  • Yeongkyoo Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.313-321
    • /
    • 2023
  • Numerous studies have investigated the adsorptive sequestration of radioactive cesium in the natural environment. Among these studies, adsorption onto minerals and high-temperature treatment stand out as highly effective, as demonstrated by the use of zeolite. In this study, cesium was ion-exchanged with birnessite and subsequently underwent high-temperature treatment up to 1100℃ to investigate both mineral phase transformation and the leaching characteristics of cesium. Birnessite has a layered structure consisting of MnO6 octahedrons that share edges, demonstrating excellent cation adsorption capacity. The high-temperature treatment of cesium-ion-exchanged birnessite resulted in changes in the mineral phase, progressing from cryptomelane, bixbyite, birnessite to hausmannite as the temperature increased. This differs from the phase transformation observed in the tunneled manganese oxide mineral todorokite ion-exchanged with cesium, which shows phase transformation only to birnessite and hausmannite. The leaching of cesium from cesium-ion-exchanged birnessite was estimated by varying the reaction time using both distilled water and a 1 M NaCl solution. The leaching quantity changed according to the treatment temperature, reaction time, and type of reaction solution. Specifically, the cesium leaching was higher in the sample reacted with 1 M NaCl compared to the sample with distilled water and also increased with longer reaction time. For the samples reacted with distilled water, the cesium leaching initially increased and then decreased, while in the NaCl solution, the leaching decreased, increased again, and finally nearly stopped like the sample in the distilled water for the sample treated at 1100℃. These changes in leaching are closely associated with the mineral phases formed at different temperatures. The phase transformation to cryptomelane and birnessite enhanced cesium leaching, whereas bixbyite and hausmannite hindered leaching. Notably, hausmannite, the most stable phase occurring at the highest temperature, demonstrated the greatest ability to inhibit cesium leaching. This results strongly suggest that high-temperature treatment of cesium-ion-exchanged birnessite effectively immobilizes and sequesters cesium.

Crystal Structures of $Cd_6-A$ Dehydrated at $750^{\circ}C$ and Dehydrated $Cd_6-A$ Reacted with Cs Vapor ($750^{\circ}C$ 에서 탈수한 $Cd_6-A$의 결정구조와 이 결정을 세슘 증기로 반응시킨 결정구조)

  • Se Bok Jang;Yang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.2
    • /
    • pp.191-198
    • /
    • 1993
  • The crystal structures of $Cd_{6-}A$ evacuated at $2{\times}10^{-6}$ torr and $750^{\circ}C$ (a = 12.204(1) $\AA$) and dehydrated $Cd_{6-}A$ reacted with 0.1 torr of Cs vapor at $250^{\circ}C$ for 12 hours (a = 12.279(1) $\AA$) have been determined by single crystal X-ray diffraction techniques in the cubic space group Pm3m at $21(1)^{\circ}C.$ Their structures were refined to final error indices, $R_1=$ 0.081 and $R_2=$ 0.091 with 151 reflections and $R_1=$ 0.095 and $R_2=$ 0.089 with 82 reflections, respectively, for which I > $3\sigma(I).$ In vacuum dehydrated $Cd_{6-}A$, six $Cd^{2+}$ ions occupy threefold-axis positions near 6-ring, recessed 0.460(3) $\AA$ into the sodalite cavity from the (111) plane at O(3) : Cd-O(3) = 2.18(2) $\AA$ and O(3)-Cd-O(3) = $115.7(4)^{\circ}.$ Upon treating it with 0.1 torr of Cs vapor at $250^{\circ}C$, all 6 $Cd^{2+}$ ions in dehydrated $Cd_{6-}A$ are reduced by Cs vapor and Cs species are found at 4 crystallographic sites : 3.0 $Cs^+$ ions lie at the centers of the 8-rings at sites of $D_{4h}$ symmetry; ca. 9.0 Cs+ ions lie on the threefold axes of unit cell, ca. 7 in the large cavity and ca. 2 in the sodalite cavity; ca. 0.5 $Cs^+$ ion is found near a 4-ring. In this structure, ca. 12.5 Cs species are found per unit cell, more than the twelve $Cs^+$ ions needed to balance the anionic charge of zeolite framework, indicating that sorption of Cs0 has occurred. The occupancies observed are simply explained by two unit cell arrangements, $Cs_{12}-A$ and $Cs_{13}-A$. About 50% of unit cells may have two $Cs^+$ ions in sodalite unit near opposite 6-rings, six in the large cavity near 6-ring and one in the large cavity near a 4-ring. The remaining 50% of unit cells may have two Cs species in the sodalite unit which are closely associated with two out of 8 $Cs^+$ ions in the large cavity to form linear $(Cs_4)^{3+}$ clusters. These clusters lie on threefold axes and extend through the centers of sodalite units. In all unit cells, three $Cs^+$ ions fill equipoints of symmetry $D_{4h}$ at the centers of 8-rings.

  • PDF