DOI QR코드

DOI QR Code

A Review on the Recycling of the Concrete Waste Generate from the Decommissioning of Nuclear Power Plants

원전 해체 콘크리트 폐기물의 재활용에 대한 고찰

  • Jeon, Ji-Hun (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University (GNU)) ;
  • Lee, Woo-Chun (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University (GNU)) ;
  • Lee, Sang-Woo (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University (GNU)) ;
  • Kim, Soon-Oh (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University (GNU))
  • 전지훈 (경상국립대학교 지질과학과 및 기초과학연구소(RINS)) ;
  • 이우춘 (경상국립대학교 지질과학과 및 기초과학연구소(RINS)) ;
  • 이상우 (경상국립대학교 지질과학과 및 기초과학연구소(RINS)) ;
  • 김순오 (경상국립대학교 지질과학과 및 기초과학연구소(RINS))
  • Received : 2021.04.21
  • Accepted : 2021.04.22
  • Published : 2021.04.28

Abstract

Globally, nuclear-decommissioning facilities have been increased in number, and thereby hundreds of thousands of wastes, such as concrete, soil, and metal, have been generated. For this reason, there have been numerous efforts and researches on the development of technology for volume reduction and recycling of solid radioactive wastes, and this study reviewed and examined thoroughly such previous studies. The waste concrete powder is rehydrated by other processes such as grinding and sintering, and the processes rendered aluminate (C3A), C4AF, C3S, and ��-C2S, which are the significant compounds controlling the hydration reaction of concrete and the compressive strength of the solidified matrix. The review of the previous studies confirmed that waste concretes could be used as recycling cement, but there remain problems with the decreasing strength of solidified matrix due to mingling with aggregates. There have been further efforts to improve the performance of recycling concrete via mixing with reactive agents using industrial by-products, such as blast furnace slag and fly ash. As a result, the compressive strength of the solidified matrix was proved to be enhanced. On the contrary, there have been few kinds of researches on manufacturing recycled concretes using soil wastes. Illite and zeolite in soil waste show the high adsorption capacity on radioactive nuclides, and they can be recycled as solidification agents. If the soil wastes are recycled as much as possible, the volume of wastes generated from the decommissioning of nuclear power plants (NPPs) is not only significantly reduced, but collateral benefits also are received because radioactive wastes are safely disposed of by solidification agents made from such soil wastes. Thus, it is required to study the production of non-sintered cement using clay minerals in soil wastes. This paper reviewed related domestic and foreign researches to consider the sustainable recycling of concrete waste from NPPs as recycling cement and utilizing clay minerals in soil waste to produce unsintered cement.

전세계적으로 해체 대상 원자력 시설이 증가하고 있으며, 이러한 원자력 시설을 해체하게 되면 수십만 톤의 콘크리트, 토양, 금속 등의 폐기물이 발생한다. 따라서 고상 방사성 폐기물 감용 및 재활용 기술에 대한 기존 연구를 면밀히 검토할 필요가 있다. 폐콘크리트 미분말은 소성 및 분쇄와 같은 추가적인 공정을 통하여 재수화 반응이 일어나며, 시멘트 수화 반응 및 고화체 압축강도에 영향을 미치는 주요 화합물인 aluminate (C3A), C4AF, C3S, ��-C2S가 생성된다. 기존 연구를 통하여 폐콘크리트 미분말을 재생 시멘트로 재활용할 수 있음을 확인하였으나, 골재의 혼입으로 인한 고화체의 강도 저하와 같은 문제점에 대한 해결방안은 현재까지 연구되지 않았다. 이러한 문제점을 보완하기 위하여 산업부산물인 고로슬래그, 비산회를 성분 조정재로 혼합하여 재생 시멘트의 성능을 증진시키는 연구가 수행되었으며, 고화체의 압축강도가 증진되는 것을 확인하였다. 그러나, 폐토양을 재활용한 비소성 시멘트의 제조에 대한 연구는 많이 수행되지 않았다. 폐토양 내 함유된 일라이트와 제올라이트는 방사성 핵종에 대한 흡착능이 우수하며, 이를 고화재로 재활용하면 원전 해체 폐기물의 부피를 저감함과 동시에 방사성 폐기물을 안전하게 담지할 수 있는 효과를 도출할 수 있다. 이러한 이유에서 폐토양 내 점토 광물을 이용한 비소성 시멘트의 제조에 대한 연구가 필요하다. 본 연구에서는 기존에 수행된 국내외 연구를 통하여 원전 해체 폐기물인 콘크리트의 재생 시멘트로서 재활용 가능성 및 개선 방안과 더불어 폐토양 내 점토 광물을 이용한 비소성 시멘트 제조에 대한 연구 필요성에 대하여 고찰하였다.

Keywords

References

  1. Abdel Geleel, M. and Mahmoud, N.S. (2012) Improvement of radioactive waste solidification process using modified bentonite materials. Nature and Science, v.10, p.158-164.
  2. Ahn, J.C., Lee, J.H. and Kang, B.H. (2003) Properties of recycle cement made of cementitious powder from concrete waste by conditions of burning. J. Arch. Inst. Kor., Nov;19, p.109-112.
  3. Ahn, J.C. and Park, D.C. (2013) The properties of raw temperature recycled cement using cementitious powder from concrete waste and industrial by-products. J. Arch. Inst. Kor., v.29, p.97-104.
  4. Binkhorst, I.P. and Cornelissen, H.A.W. (1998) Technology for reuse of contaminated concrete constituents Vienna(Austria): International Atomic Energy Agency(Austria) Report No.: IAEA-TECDOC-1022, p.187.
  5. Byun, K.J., Song, H.W., Kim, H.J. and Lee, H.J. (2004) Property and application of recycled aggregate and recycled aggregate concrete. J. Korea Concr. Inst., v.5, p.135-152.
  6. Cau Dit Coumes, C., Courtois, S., Peysson, S., Ambroise, J. and Pera, J. (2009) Calcium sulfoaluminate cement blended with OPC: a potential binder to encapsulate lowlevel radioactive slurries of complex chemistry. Cem. Concr. Res., v.39, p.740-747. doi: 10.1016/j.cemconres.2009.05.016
  7. Cheon, K.H., Choi, J.H., Shin, W.S. and Choi, S.J. (2014) Adsorption characteristics of cobalt, strontium, and cesium on natural soil and kaolin. J. Environ. Sci. Int., v.23, p.1609-1618. doi: 10.5322/jesi.2014.23.9.1609
  8. Cheon, J.H., Lee, S.C., Kim, C.L. and Park, H.G. (2018) Feasibility study on recycling of concrete waste from NPP decommissioning through literature review. J. Rec. Const. Resources, v.6, p.115-122. doi: 10.14190/JRCR.2018.6.2.115
  9. Choi, Y.H., Ko, J.H., Lee, D.G., Kim, H.W., Park, K.S. and Sohn, H.D. (2020) Safety assessment for the self-disposal plan of clearance radioactive waste after nuclear power plant decommissioning. J. Energ. Eng., v.29, p.63-74. doi: 10.5855/ENERGY.2020.29.1.063
  10. Cinquepalmi, M.A., Mangialardi, T., Panei, L., Paolini, A.E. and Piga, L. (2008) Reuse of cement-solidified municipal incinerator fly ash in cement mortars: Physico-mechanical and leaching characteristics. J. Haz. Mat., v.151, p.585-593. doi: 10.1016/j.jhazmat.2007.06.026
  11. Collins, F.G. and Sanjayan, J.G. (2000) Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cem. Concr. Res., v.30, p.1401-1406. http://dx.doi.org/10.1016/S0008-8846(00)00327-6
  12. El-Kamash, A.M., El-Naggar, M.R. and El-Dessoky, M.I. (2006) Immobilization of cesium and strontium radionuclides in zeolite-cement blends. J. Haz. Mat., v.B136, p.310-316. doi: 10.1016/j.jhazmat.2005.12.020
  13. Hwang, B.I., Kang, S.P. and Kim, S.J. (2018) A study on the factors affecting the strength of alkali-activated slag binders. J. Rec. Const. Resources, v.6, p.130-137. doi: 10.14190/JRCR.2018.6.2.130
  14. Hwang, J.H., Choung, S.W., Shin, W.S. and Han, W.S. (2018) Study on the illite modification for removal of radioactive cesium in water environment near nuclear facilities. J. Econ. Environ. Geol., v.51, p.113-120. doi: 10.9719/EEG.2018.51.2.113
  15. Im, N.G., Kim, B.U. and Heo, J.W. (2016) Non-fired excellent purification water permeable concrete manufacturing method including illite and functional admixture, KOR Patent 10-1636978 (registered on 2016.07.07.).
  16. International Atomic Energy Agency (IAEA) (2021)"The database on nuclear power reactors", Power Reactor Information System. Accessed Feb. 20 2021. Available from: http://www.iaea.org/pris.
  17. Jang, B.J., Kim, S.W., Song, J.H., Park, H.M., Ju, M.K. and Park, C.W. (2013) Fundamental characteristics of carbon-capturing and sequestering activated blast-furnace slag mortar. Int. J. Highw. Eng., v.15, p.95-103. doi: 10.7855/IJHE.2013.15.2.095
  18. Jang, J.Y., Jin, J.H., Cho, G.T., Nam, Y.K. and Jeon, C.K. (2003) Strength characteristics of recycled concrete by recycled aggregate in incheon area waste concrete. J. Korea Concr. Inst., v.15, p.197-208. doi: 10.4334/JKCI.2003.15.2.197
  19. Jeong, J.G., Kim, Y.J., Lee, H.M., Yoo, W.S. and Choi, Y.H. (2017) Evaluation of fundmental properties for the application of generated fine powder during concrete demolition. J. Korea Concr. Inst., Symposium, v.29, p.581-582.
  20. Jo, B.W., Park, M.S. and Park, S.K. (2006) Strength development and hardening mechanism of alkali activated fly ash mortar. J. Korea Concr. Inst., v.18, p.449-458. http://dx.doi.org/10.4334/JKCI.2006.18.4.449
  21. Jung, S.J., Bang, W.K. and Kim, C.E. (1998) The effects of Na2SO4 on the hydration of fly ash blended cement. J. Korean Ceram. Soc., v.35, p.1227-1232.
  22. Kang, D.W., Ahn, J.C., Park, D.C., Kim, H.Y. and Kang, B.H. (2011) The basic properties of recycled cement using cementitious powder from waste concrete and industrial by-products. J. Arch. Inst. Kor., Symposium, p.245-248.
  23. Kang, H.Y., Park, S.S. and Han, S.H. (2008) Acid corrosion resistance and durability of alkali-activated fly ash cement-concrete. J. Korean Soc. Environ. Eng., v.30, p.61-68.
  24. Kim, G.W., Kim, B.J., Yang, K.H. and Song, J.K. (2012) Strength development of blended sodium alkali-activated ground granulated blast-furnace slag (GGBS) mortar. J. Korea Concr. Inst., v.24, p.137-145. doi: 10.4334/jkci.2012.24.2.137
  25. Kim, J.H. and Chung, C.W. (2019) Leaching Test for utilizing hydrated cement paste as a solidifying agent for radioactive waste disposal. J. Korea Concr. Inst., Symposium, v.31, p.597-598.
  26. Kim, J.H., Seo, E.A. and Chung, C.W. (2020) Performance of waste concrete powder for its potential utilization as a solidifying agent on radioactive waste immobilization. J. Korea Concr. Inst., v.32, p.327-328.
  27. Kim, J.M., Jeong, J.Y., Choi, J.H. and Shin, S.C. (2013) Relationship between compressive Strength and dynamic modulus of elasticity in the cement based solid product for consolidating disposal of medium-low level radioactive waste. J. Korea Concr. Inst., v.25, p.321-329. doi: 10.4334/jkci.2013.25.3.321
  28. Kim, J.M. and Jo, H.Y. (1999) Causes and countermeasures for efflorescence of concrete. KRMCIA, v.1, p.16-25
  29. Kim, J.Y., Park, C.W., Ahn, J.C. and Kang, B.H. (2005) Carbonation properties of recycled cement mortar made of cementitious powder from concrete waste. J. Korea Inst. Build Constr., Symposium, v.5, p.61-64. doi: 10.5345/jkic.2006.6.4.061
  30. Kim, S.B., Kim, Y.S., Kang, S.W., Oh, D.M. and Lee, W.T. (2016) Removal of Cs and Sr in water using chemical and natural coagulants. J. Korean Soc. Environ. Eng., v.38, p.662-666. doi: 10.4491/ksee.2016.38.12.662
  31. Kim, Y.K., Jung, U.I. and Kim, B.J. (2015) Compressive strength properties of concrete using waste concrete powder as a cement substitute. J. Korea Inst. Build Constr., Symposium, v.15, p.128-129.
  32. Koh, K.T., Ryu, G.S. and Lee, J.H. (2010) Properties of the flowability and strength of cementless alkali-activated mortar using the mixed fly ash and ground granulated blast-furnace slag. J. Rec. Const. Resources, v.12, p.114-121.
  33. Koo, D.S., Sung, H.H., Hong, S.B. and Seo, B.K. (2018) Characteristics of solidified cement of electrokinetically decontaminated soil and concrete waste. J. Nucl. Fuel Cycle Waste Technol., v.16, p.83-91. doi: 10.7733/jnfcwt.2018.16.1.83
  34. Lee, B.S. (2020) Trends and prospect in development of domestic and international nuclear power plant decommissioning technology. World Nuclear Power Market Insight, v.8, p.1-40.
  35. Lee, H.J., Seo, E.A., Yang, N.W. and Kim, D.G. (2016) Introduction of decommissioning and dismantling technology for nuclear power plant structure based on domestic and international practices. J. Korea Concr. Inst., v.28, p.8-14.
  36. Lee, K.Y., Oh, M.K., Kim, J.M., Lee, E.H., Kim, I.S., Kim, K.W., Chung, D.Y. and Seo, B.K. (2018) Trends in technology development for the treatment of radioactive concrete waste. J. Kor. Rad. Waste Soc., v.16, p.93-105. doi: 10.7733/jnfcwt.2018.16.1.93
  37. Lee, S.H. (2011) Considration of points to be noted for the use of mixed and admixtures in cement and concrete. Cement, v.2011-191, p.35-42.
  38. Lee, S.H., Lim, Y.J. and Cho, J.W. (2015) Hydration properties of ordinary portland cement using mixture of limestone and blast furnace slag as minor inorganic additives. J. Korea Concr. Inst., v.27, p.3-9. doi: 10.4334/JKCI.2015.27.1.003
  39. Lee, S.H., Woo, Y.Y. and Cho, D.Y. (2015) Applications and technical status of solidification. J. Rec. Const. Resources, v.10, p.26-32. doi: 10.14190/MRCR.2015.10.2.026
  40. Lee, Y.J., Hwang, D.S., Lee, K.W., Jeong, G.H. and Moon, J.K. (2013) Characterization of cement waste form for final disposal of decommissioned concrete waste. J. Kor. Rad. Waste Soc., v.11, p.271-280. doi: 10.7733/jnfcwt-k.2013.11.4.271
  41. Lim, M.K., Park, M.Y. and Jung, S.J. (2007) A Study of the Strength and durability properties on recycled fine aggregate mortar and blain of blast furance slag. J. Arch. Inst. Kor., v.23, p.91-98.
  42. Malviya, R. and Chaudhary, R. (2006) Factors affecting hazardous waste solidification/stabilization: A review. J. Haz. Mat., v.137, p.267-276. doi: 10.1016/j.jhazmat.2006.01.065
  43. Min, B.Y., Choi, W.K., Lee, K.W. and Park, J.W. (2009) Evaluation of the compressive strength and leachability for cemented waste using radioactive fine powder. J. Nucl. Fuel Cycle Waste Technol., v.26, p.658-666.
  44. Min, B.Y., Park, J.W., Choi, W.K. and Lee, K.W. (2009) Separation of radionuclide from dismantled concrete waste. J. Kor. Rad. Waste Soc., v.7, p.79-86.
  45. Moon, J.G. (2013) Status and prospect of nuclear facility decommissioning technology development. Nuclear Industry, v.33, p.56-59.
  46. Mun, Y.B., Choi, H.K., Kim, J.Y., Lee, J.H., Chung, C.W. and Kim, J.H. (2017) Recycling waste paste from concrete for solidifying agent, J. Korea Inst. Build Constr. v.17, p.269-277. doi: 10.5345/JKIBC.2017.17.3.269
  47. Nam, J.H. (2010) Cement concrete pavement for recycling industrial by-products. Int. J. Highw. Eng., v.12, p.20-24.
  48. Oh, S.G. (2005) The physical properties of high-flowability mortar using recyclable cement as cement binder. J. Arch. Inst. Kor., v.21, p.105-112.
  49. Oh, S.G. and Hong, Y.T. (2007) The development of high quality recyclable cement made from waste concrete using micro separating system. J. Arch. Inst. Kor., v.23, p.167-174.
  50. Oh, S.G. and Kim, J.K. (2002) Properties and performance improvement of the recycle cement used waste concrete powder. J. Arch. Inst. Kor., v.18, p.83-90.
  51. Palomo, A., Grutzeck, M.W. and Blanco, M.T. (1999) Alkali-activated fly ashes, a cement for the future. Cem. Concr. Res., v.29, p.1323-1329. doi: 10.1016/S0008-8846(98)00243-9
  52. Park, C.W., Ahn, J.C. and Kang, B.H. (2004) A study on the technique to manufacture recycled cement from cementitous powders for complete recycling of concrete structures. J. Korea Inst. Build Constr., v.4, p.143-151. doi: 10.5345/JKIC.2004.4.3.143
  53. Park, C.W. and Kang, B.H. (2004) A study on hydration properties of recycled cement mortar using admixture materials. J. Korea Inst. Build Constr., v.4, p.79-86. doi: 10.5345/JKIC.2004.4.4.079
  54. Park, H.S., Kim, I.T., Kim, H.Y., Ruy, S.K. and Kim, J.H. (2004) General approach to stabilization/solidification of radioactive wastes. J. Korea Nuclear Society, Symposium(2004-spring), p.1-14.
  55. Park, S.S., Kang, H.Y. and Han, K.S. (2007) Development of fly ash/slag cement using alkali-activated reaction(1) compressive strength and acid corrosion resistance. J. Korean Soc. Environ. Eng., v.29, p.801-809.
  56. Qin, L. and Gao, X.J. (2019) Recycling of waste autoclaved aerated concrete powder in portland cement by accelerated carbonation. Waste Manage., v.89, p.254-264. doi: 10.1016/j.wasman.2019.04.018
  57. Qin, L. and Gao, X.J. (2019) Properties of coal gangue-portland cement mixture with carbonation. Fuel, v.245, p.1-12. doi: 10.1016/j.fuel.2019.02.067
  58. Saleh, H.M., El-Sheikh, S.M., Elshereafy, E.E. and Essa, A.K. (2019) Performance of cement-slag-titanate nanofibers composite immobilized radioactive waste solution through frost and flooding events. J. Con. Build Mat., v.223, p.221-232. doi: 10.1016/j.conbuildmat.2019.06.219
  59. Sasaki, T., Sone, T., Koyama, H. and Yamaguchi, H. (2009) Steam-assisted pyrolysis system for decontamination and volume reduction of radioactive organic waste. J. Nucl. Sci. Techol., v.46, p.232-238. doi: 10.1080/18811248.2007.9711526
  60. Sawada, K., Uruga, K., Koyama, T., Shimada, T., Mori, Y. and Enokida, Y. (2005) Stoichiometric relation for extraction of uranium from UO2 powder using TBP complex with HNO3 and H2O in supercritical CO2. J. Nucl. Sci. Techol., v.42, p.301-304. doi: 10.1080/18811248.2005.9726394
  61. Shi, C. and Fernandez-Jimenz, A. (2006) Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. J. Haz. Mat., v.137, p.1656-1663. doi: 10.1016/j.jhazmat.2006.05.008
  62. Shin, S. W. (2003) Development of high performance concrete using recycled aggregate. J. Korea Concr. Inst., v.15, p.52-59. https://doi.org/10.4334/JKCI.2003.15.1.052
  63. Shin, T.S., Hong, S.P. and Kim, K.Y. (2013) Assessment of leaching characteristics of alkaline and heavymetal ions from recycled concrete aggregate. J. Environ. Impact Asees., v.22, p.427-437. doi: 10.14249/eia.2013.22.5.427
  64. Song, J.S. (2016) Current status and future of nuclear power plant decommissioning waste treatment technology. KEITI, v.134, p.1-13.
  65. Tian, Q. and Sasaki, K. (2019) Application of fly ash-based materials for stabilization/solidification of cesium and strontium. Environ. Sci. Pollut. Res., v.26, p.23542-23554. doi: 10.1007/s11356-019-05612-1
  66. Yang, K.H. and Song, J.G. (2007) The properties and applications of alkali-activated concrete with no cement. J. Korea Concr. Inst., v.19, p.42-48. doi: 10.22636/MKCI.2007.19.2.42
  67. Ye, S., Feng, P. and Zhang, W. (2020) Rapid solidification of portland cement/polyacrylamide hydrogel (PC/PAM) composites for diverse wastewater treatments. RSC Adv., v.10, p.18936-18944. doi: 10.1039/d0ra03025b
  68. Yeon, I.J., Ju, S.Y., Lee, S.W., Shin, T.S. and Kim, K.Y. (2008) The solidification characteristics of recycled aggregate mixed with incineration ash and waste concrete. J. Kor. Geo-Environ. Soc., v.9, p.5-13.