• 제목/요약/키워드: ZF set theory

검색결과 3건 처리시간 0.017초

A reconstruction of the G$\ddot{o}$del's proof of the consistency of GCH and AC with the axioms of Zermelo-Fraenkel set theory

  • 최창순
    • 한국수학사학회지
    • /
    • 제24권3호
    • /
    • pp.59-76
    • /
    • 2011
  • NBG의 공리들을 충족시키는 모델로서의 집합 V 를 도입하고 그것의 요소들을 sets라 부르고 그것의 부분집합들을 classes라 부른다. 일반연속체가설 (GCH) 와 선택공리 (AC) 가 ZF 집합론과 무모순이라는 것에 대한 괴델의 증명을 그 이후 나온 Mostowski-Shepherdson mapping 정리, Tarski-Vaught 정리 및 Montague-Levy 정리의 반사원리들, NBG가 ZF의 보존적 확장이라는 정리 등을 이용하여 재구성해 본다.

On Coefficients of a Certain Subclass of Starlike and Bi-starlike Functions

  • Mahzoon, Hesam;Sokol, Janusz
    • Kyungpook Mathematical Journal
    • /
    • 제61권3호
    • /
    • pp.513-522
    • /
    • 2021
  • In this paper we investigate a subclass 𝓜(α) of the class of starlike functions in the unit disk |z| < 1. 𝓜(α), π/2 ≤ α < π, is the set of all analytic functions f in the unit disk |z| < 1 with the normalization f(0) = f'(0) - 1 = 0 that satisfy the condition $$1+\frac{{\alpha}-{\pi}}{2\;sin\;{\alpha}}. The class 𝓜(α) was introduced by Kargar et al. [Complex Anal. Oper. Theory 11: 1639-1649, 2017]. In this paper some basic geometric properties of the class 𝓜(α) are investigated. Among others things, coefficients estimates and bound are given for the Fekete-Szegö functional associated with the k-th root transform [f(zk)]1/k. Also a certain subclass of bi-starlike functions is introduced and the bounds for the initial coefficients are obtained.