References
- D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., 31(2)(1986), 70-77.
- D. A. Brannan, J. Clunie and W. E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math. 22(1970), 476-485. https://doi.org/10.4153/CJM-1970-055-8
- M. Dorff, Convolutions of planar harmonic convex mappings, Complex Variables, Theory and Appl., 45(3)(2001), 263-271. https://doi.org/10.1080/17476930108815381
- R. Kargar, A. Ebadian and J. Soko l, Radius problems for some subclasses of analytic functions, Complex Anal. Oper. Theory, 11(2017), 1639-1649. https://doi.org/10.1007/s11785-016-0584-x
- F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1969), 8-12. https://doi.org/10.1090/S0002-9939-1969-0232926-9
- M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68. https://doi.org/10.1090/S0002-9939-1967-0206255-1
- E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal., 32(1969), 100-112. https://doi.org/10.1007/BF00247676
- Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Gottingen, 1975.
- W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc., 48(1943), 48-82.
- Y. Sun, Z.-G. Wang, A. Rasila and J. Soko l, On a subclass of starlike functions associated with a vertical strip domain, J. Ineq. Appl., (2019) 2019: 35.