• Title/Summary/Keyword: Z-shape

Search Result 320, Processing Time 0.024 seconds

The Roughing Tool-Path Generation of Die-Cavity Shape Using the Drill (Drill을 이용한 Die-Cavity 형상의 황삭 가공 경로 생성)

  • Lim, P.;Lee, H. G;Yang, G. E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.398-401
    • /
    • 2001
  • This paper presents rough cutting pat고 drilling. This method has differences from conventional method which uses boundary curve by intersecting object to machine and each cutting plane. Die-cavity shape is drilled in z-map, we select various tool and remove much material in the short time. as a result, this method raise productivity. The major challenges in die-cavity pocketing include : 1)finding an inscribed circle for removing material of unmachined regions, 2) selecting optimal tool and efficiently arranging tool, 3) generating offset surface of shape, 4) determining machined width according to the selected tool, 5) detecting and removing unmachined regions, and 6) linking PJE(path-joining element). Conventional machining method calling contour-map is compared with drilling method using Z-map, for finding efficiency in the view of productivity.

  • PDF

SEPARABLE MINIMAL SURFACES AND THEIR LIMIT BEHAVIOR

  • Daehwan Kim;Yuta Ogata
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.761-778
    • /
    • 2024
  • A separable minimal surface is represented by the form of f(x) + g(y) + h(z) = 0, where f, g and h are real-valued functions of x, y and z, respectively. We provide exact equations for separable minimal surfaces with elliptic functions that are singly, doubly and triply periodic minimal surfaces and completely classify all them. In particular, parameters in the separable minimal surfaces change the shape of the surfaces, such as fundamental periods and its limit behavior, within the form f(x) + g(y) + h(z) = 0.

Fatigue Strength of Composite Joint Structures Reinforced by Jagged Shaped Stainless Steel Z-pins (요철 형상의 스테인레스강 Z-핀으로 보강된 복합재 접합 구조물의 피로강도)

  • Choi, Ik-Hyeon;Lim, Cheol-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.12
    • /
    • pp.967-974
    • /
    • 2013
  • Recently the authors had proposed the z-pinning patch concept to simply manufacture z-pinned composite structures at industrial production site and manufactured composite single-lap shear joint specimens using the concept. Through static tensile test on the specimens they had obtained 54~68% improvement of the joint strength. As a sequential study of it, in this study, fatigue test has performed to measure an improvement of joint strength under cyclic loading. The z-pin's material is stainless steel and its surface was specially machined into zagged shapes and chemically corroded to increase the connection force with composite materials. Approximately 98~125% improvement of the joint strength under cyclic loading was obtained.

Morphology and plastid psbA phylogeny of Zygnema (Zygnemataceae, Chlorophyta) from Korea: Z. insigne and Z. leiospermum

  • Kim, Jee-Hwan;Boo, Sung Min;Kim, Young Hwan
    • ALGAE
    • /
    • v.27 no.4
    • /
    • pp.225-234
    • /
    • 2012
  • Zygnema is a conjugating filamentous green algal genus that is distributed in a broad range of freshwater habitats, from sea level to alpine summits. Although more than 150 species have been described worldwide, their taxonomy remains unclear, probably owing to their relatively simple morphology. We investigated the detailed morphology of Korean Zygnema species, combined with analysis of the plastid psbA gene from 22 specimens of the genus and putative relatives, in order to develope a key to their identification and isolation, and to determine their relationships. We recognized two species of Zygnema; Z. insigne and Z. leiospermum, based on morphological characters such as width of the vegetative cell, position of zygospores, dimensions and form of spores, shape of female gametangia, and color of mesospores. The analysis of psbA data was consistent with morphological comparison. The pairwise divergence between two species was 3.7-4.1% (34-38 bp) in psbA sequences. The phylogeny of psbA revealed the monophyly of Z. insigne and Z. leiospermum together with two isolates of Z. circumcarinatum from Germany and Scotland. This is the first report on the psbA gene phylogeny of Zygnema.

Parametric modeling and shape optimization design of five extended cylindrical reticulated shells

  • Wu, J.;Lu, X.Y.;Li, S.C.;Xu, Z.H.;Wang, Z.D.;Li, L.P.;Xue, Y.G.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.217-247
    • /
    • 2016
  • Five extended cylindrical reticulated shells are proposed by changing distribution rule of diagonal rods based on three fundamental types. Modeling programs for fundamental types and extended types of cylindrical reticulated shell are compiled by using the ANSYS Parametric Design Language (APDL). On this basis, conditional formulas are derived when the grid shape of cylindrical reticulated shells is equilateral triangle. Internal force analysis of cylindrical reticulated shells is carried out. The variation and distribution regularities of maximum displacement and stress are studied. A shape optimization program is proposed by adopting the sequence two-stage algorithm (RDQA) in FORTRAN environment based on the characteristics of cylindrical reticulated shells and the ideas of discrete variable optimization design. Shape optimization is achieved by considering the objective function of the minimum total steel consumption, global and locality constraints. The shape optimization for three fundamental types and five extended types is calculated with the span of 30 m~80 m and rise-span ratio of 1/7~1/3. The variations of the total steel consumption along with the span and rise-span ratio are analyzed with contrast to the results of shape optimization. The optimal combination of main design parameters for five extended cylindrical reticulated shells is investigated. The total steel consumption affected by distribution rule of diagonal rods is discussed. The results show that: (1) Parametric modeling method is simple, efficient and practical, which can quickly generate different types of cylindrical reticulated shells. (2) The mechanical properties of five extended cylindrical reticulated shells are better than their fundamental types. (3) The total steel consumption of cylindrical reticulated shells is optimized to be the least when rise-span ratio is 1/6. (4) The extended type of three-way grid cylindrical reticulated shell should be preferentially adopted in practical engineering. (5) The grid shape of reticulated shells should be designed to equilateral triangle as much as possible because of its reasonable stress and the lowest total steel consumption.

A Study on MZ Generation(2030s) Male Body Shape Comparison and Body Shape Change - Focused on the 7th and 8th Size Korea's Anthropometric Data - (MZ세대(2030대) 남성의 체형비교 및 체형 변화 연구 - 제 7차, 제 8차 사이즈코리아 직접 측정치를 기준으로 -)

  • Ji-Eun Kim;Eun-Kyong Kim
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.25 no.1
    • /
    • pp.33-47
    • /
    • 2023
  • In this study, the difference in human body dimensions between the age groups of Generation M (27 to 39 years old) and Generation Z (20 to 26 years old) was analyzed. This study also analyzed if there was a change in the body shape of the MZ generation, who have different sensibilities from the "young people" of the past. In addition, major changes in human body dimensions were carefully analyzed and presented as basic data for clothing design. Therefore, a t-test was performed to verify the significant differences in the measurements of each age group. To examine the change in human body measurements according to the measurement year, the 7th and 8th size Korea data statistics were analyzed. The main required dimensions of clothing design were analyzed graphically for visual changes according to measurement year and age group. As a result of the analysis, Generation Z was found to have a difference in body shape from Generation M, and is generally smaller and slimmer with broader shoulders. In addition, the body shape change between the 7th and 8th measurement periods was significantly higher than the 8th measurement overall. Height has increased and back length has become shorter, resulting in a larger ratio of lower body length. In addition, the proportion of obesity abnormalities has increased. Therefore, since the dimensional system set from the past data can cause problems for the fitting of clothing for the MZ generation, it is necessary to design the clothing and reset the dimensional system making it suitable for the changed the body shape of the MZ generation.

Development of micro-stereolithography system for the fabrication of three-dimensional micro-structures (3 차원 형상의 미소제품 제작을 위한 마이크로 광 조형시스템의 개발)

  • 이인환;조윤형;조동우;이응숙
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.186-194
    • /
    • 2004
  • Micro-stereolithography is a newly proposed technology as a means that can fabricate a 3D micro-structure of free form. It makes a 3D micro-structure by dividing the shape into many slices of relevant thickness along horizontal surfaces, hardening each layer of slice with a focused laser beam, and stacking them up to a desired shape. In this technology, differently from the conventional stereolithography, scale effect is dominant. To realize micro-stereolithography technology, we developed the micro-stereolithography apparatus which is composed of an Ar+ laser, x-y-z stages. controllers. optical devices and scan path generation software. Related processes were developed, too. Using the system, a number of micro-structures were successfully fabricated. Some of these samples are shown for prove this system. Laser scan path generation algorithm and software considering photopolymer solidification phenomena as well as given 3D model were developed. Sample fabrication of developed software shows relatively high dimensional accuracy compared to the uncompensated result.

Pure Density Evolution of the Ultraviolet Quasar Luminosity Function at 2 < z < 6

  • Kim, Yongjung;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.53.2-53.2
    • /
    • 2021
  • Quasar luminosity function (QLF) shows the active galactic nucleus (AGN) demography as a result of the combination of the growth and the evolution of black holes, galaxies, and dark matter halos along the cosmic time. The recent wide and deep surveys have improved the census of high-redshift quasars, making it possible to construct reliable ultraviolet (UV) QLFs at 2 < z < 6 down to M1450 = -23 mag. By parameterizing these up-to-date observed UV QLFs that are the most extensive in both luminosity and survey area coverage at a given redshift, we show that the UV QLF has a universal shape, and their evolution can be approximated by a pure density evolution (PDE). In order to explain the observed QLF, we construct a model QLF employing the halo mass function, a number of empirical scaling relations, and the Eddington ratio distribution. We also include the outshining of AGN over its host galaxy, which made it possible to reproduce a moderately flat shape of the faint end of the observed QLF (slope of ~ -1.1). This model successfully explains the observed PDE behavior of UV QLF at z > 2, meaning that the QLF evolution at high redshift can be understood under the framework of halo mass function evolution. The importance of the outshining effect in our model also implies that there could be a hidden population of faint AGNs (M1450 > -24 mag), which are buried under their host galaxy light.

  • PDF