• Title/Summary/Keyword: Z-map Data

Search Result 71, Processing Time 0.026 seconds

Analysis of Erosion and Deposition by Debris-flow with LiDAR (지상 LiDAR를 이용한 토석류 발생에 의한 침식, 퇴적량 측정)

  • Jun, Byong-Hee;Jang, Chang-Deok;Kim, Nam-Gyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.2
    • /
    • pp.54-63
    • /
    • 2010
  • The intensive rainfall over 455 mm occurred between on 9 to 14 July 2009 triggered debris flows around the mountain area in Jecheon County. We mapped the debris flow area and estimated the debris flow volume using a high resolution digital elevation model (DEM) generated respectively from terrestrial LiDAR (Light Detection And Ranging) and topographic maps. For the LiDAR measurement, the terrestrial laser scanning system RIEGL LMS-Z390i which is equipped with GPS system and high-resolution digital camera were used. After the clipping and filtering, the point data generated by LiDAR scanning were overlapped with digital map and produced DEM after debris flow. The comparison between digital map and LiDAR scanning result showed the erosion and deposition volumes of about $17,586m^3$ and $7,520m^3$, respectively. The LiDAR data allowed comprehensive investigation of the morphological features present along the sliding surface and in the deposit areas.

Measured Data based Inspection for Unintended Deflections in Automotive Outer Panels (측정 데이터 이용한 자동차 외판 미세굴곡 추적 사례 연구)

  • Chung, Yun Chan;Lee, Sang Heon;Chang, Dae Soon;Park, Sang Chul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.2
    • /
    • pp.113-119
    • /
    • 2013
  • This paper proposes an approach to detect unintended deflections in an automotive outer panel. Conventionally, the detection of unintended deflections has been performed by experienced works, and it requires much amount of time and efforts. The motivation of this work is to reduce such efforts by providing an automated detection methodology. For the detection of unintended deflections, we make use of the measured data from an optical scanner which can be considered as a Z-map data. The proposed approach consists of four major steps; 1) measured data acquisition for an automotive outer panel, 2) identification of shape features, 3) removal of shape features, and 4) detection of unintended deflections via curvature analysis.

A Study on the Verification of 5-Axis CNC Machining (5축 CNC가공의 검증에 관한 연구)

  • 김찬봉;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.93-100
    • /
    • 1994
  • 5-axis CNC machining is being used in the manufacturing of tire mold, screw, and turbine blade because it can produce complex workpiece more efficiently and accurately than 3-axis CNC machining does. However, it is difficult to calculate the CL data in 5-axis CNC machining. This paper describes an efficient method to modify and edit the NC code and a data structure for representation of the workpiece produced by 5-axis CNC machining. Wireframe display of tool path and shading display of workpiece are used to represent verification results. Machining errors can be evaluated quantitively using the data structure based on the workpiece data model. The methods are implemented in a program with a IBM-PC and MS-Windows.

Feedrate Optimization using CL Surface (공구경로 곡면을 이용한 이송속도 최적화)

  • 김수진;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.547-552
    • /
    • 2003
  • In mold machining, there are many concave machining regions where chatter and tool deflection occur since MRR (material removal rate) increases as curvature increases even though cutting speed and depth of cut are constant. Boolean operation between stock and tool model is widely used to compute MRR in NC milling simulation. In finish cutting, the side step is reduced to about 0.3mm and tool path length is sometimes over 300m. so Boolean operation takes long computation time and includes much error if the resolution of stock and tool model is larger than the side step. In this paper, curvature of CL(cutter location) surface and side step of tool path is used to compute the feedrate for constant MRR machining. The data structure of CL surface is Z-map generated from NC tool path. The algorithm to get local curvature from discrete data was developed and applied to compute local curvature of CL surface. The side step of tool path was computed by point density map which includes cutter location point density at each grid element. The feedrate computed from curvature and side step is inserted to new tool path to regulate MRR. The resultants wire applied to feedrate optimization system which generates new tool path with feedrate from NC codes for finish cutting. The system was applied to speaker mold machining. The finishing time was reduced to 12.6%. tool wear was reduced from 2mm to 1.1mm and chatter marks and over cut on corner were removed.

  • PDF

Mesh Decimation for Polygon Rendering Based Real-Time 3-Axis NC Milling Simulation (실시간 3축 NC 밀링 시뮬레이션을 위한 메쉬 간략화 방법)

  • Joo, S.W.;Lee, S.H.;Park, K.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.4
    • /
    • pp.347-358
    • /
    • 2000
  • The view dependency of typical spatial-partitioning based NC simulation methods is overcome by polygon rendering technique that generates polygons to represent the workpiece, thus enabling dynamic viewing transformations without reconstruction of the entire data structure. However, the polygon rendering technique still has difficulty in realizing real-time simulation due to unsatisfactory performance of current graphics devices. Therefore, it is necessary to develop a mesh decimation method that enables rapid rendering without loss of display quality. In this paper. we proposed a new mesh decimation algorithm thor a workpiece whose shape varies dynamically. In this algorithm, the 2-map data thor a given workpiece is divided into several regions, and a triangular mesh is constructed for each region first. Then, if any region it cut by the tool, its mesh is regenerated and decimated again. Since the range of mesh decimation is confined to a few regions, the reduced polygons for rendering can be obtained rapidly. Our method enables the polygon-rendering based NC simulation to be applied to the computers equipped with a wider range of graphics cards.

  • PDF

Cutter Interference Avoidance in NC Machining of Compound Surfaces (복합곡면 NC 가공에서의 공구간섭 방지)

  • Jun, Cha-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.3
    • /
    • pp.139-154
    • /
    • 1993
  • Cutter Interference(or part surface gouging) is one of the most critical problems in NC machining of sculptured surfaces. Presented in this paper is and algorithmic procedure that converts CC data obtained from a compound surface(several surfaces without topological relationship) into interference-free CL data. The interference handling procedure consists of following steps: (1) Z-map model is constructed from input surfaces. (2) Interference sources are detected using local properties of the sources. (3) Interference regions are completely identified based on global tests for neighboring CC points of the interference sources (4) Cutter paths are reconstructed after removing the CC data in interference regions, while avoiding any new interferences.

  • PDF

The collecting of 3dimensional data from the way of pulse generating at the M/C (펄스지령법에 의한 머시닝센터상의 3차원 형상정보 수집)

  • 강효석;임한석;김선호;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.396-399
    • /
    • 1995
  • In this study, Acquisition system is proposed to acquire 3 dimensional data of the free surface model using direct pulse control to machining center. Todo this, I/F to connect between manual operating handle and computer is made, and 3 dimensional shape measuring algorithm using Z-map is applied. The 3 dimensional shape data of the free surface model measured by laser displacement sensor and electric touch probe are achieved directly. Performance of the proposed system is evaluated through measurement of various shape model.

  • PDF

Dynamic Culling Scheme Based on Altitude for Real-Time Rendering System (고도에 따른 렌더링 시스템을 위한 동적 컬링 방안)

  • Lee, Chungjae;Kang, Seokyoon;Kim, Ki Il
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.2
    • /
    • pp.73-79
    • /
    • 2015
  • Dynamic culling scheme is usually implemented to handle overhead caused by rendering the massive large-scale terrain data in flight simulator. However, existing culling scheme without considering altitude is not suitable for flight simulator due to additional computational overhead. To solve this problem, in this paper, we propose hybrid approach by applying two dynamic culling schemes depending on altitude. In addition, we remove unnessary computational overhead by creating different z-map resolution when aircraft changes its altitude. The proposed scheme is implemented with open graphic library and tested with real terrain data. Through the experimental results, we can recognize the improved rendering speed about 8 to 73 percents as compared to existing scheme.

An Efficient Navigation of Volume Dataset Using z-Buffer (z-버퍼를 이용한 효율적인 볼륨 데이터 항행기법)

  • Kim, Hwa-Jin;Shin, Byeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.1
    • /
    • pp.29-35
    • /
    • 2002
  • In virtual endoscopy, it is important to produce high quality perspective images in real-time. However, it is more significant to devise a navigation method that can make a virtual camera move through in human cavities such as colon and bronchus without collision and let the user control the camera intuitively. We propose an efficient navigation method, which generates 2D depth map during rendering the current frame, then determines position and direction of camera using the depth information. It offers collision-free navigation and allows us to control the camera as we want. Also it does not require preprocessing step and additional data structures.

  • PDF

Development of Application to Deal with Large Data Using Hadoop for 3D Printer (하둡을 이용한 3D 프린터용 대용량 데이터 처리 응용 개발)

  • Lee, Kang Eun;Kim, Sungsuk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.1
    • /
    • pp.11-16
    • /
    • 2020
  • 3D printing is one of the emerging technologies and getting a lot of attention. To do 3D printing, 3D model is first generated, and then converted to G-code which is 3D printer's operations. Facet, which is a small triangle, represents a small surface of 3D model. Depending on the height or precision of the 3D model, the number of facets becomes very large and so the conversion time from 3D model to G-code takes longer. Apach Hadoop is a software framework to support distributed processing for large data set and its application range gets widening. In this paper, Hadoop is used to do the conversion works time-efficient way. 2-phase distributed algorithm is developed first. In the algorithm, all facets are sorted according to its lowest Z-value, divided into N parts, and converted on several nodes independently. The algorithm is implemented in four steps; preprocessing - Map - Shuffling - Reduce of Hadoop. Finally, to show the performance evaluation, Hadoop systems are set up and converts testing 3D model while changing the height or precision.