• Title/Summary/Keyword: Young Modulus

Search Result 1,430, Processing Time 0.031 seconds

Comparison of Test Methods for Vibration Damping Properties (진동감쇠특성 시험법 비교)

  • Shin Su Hyun;Lee Yong Bong;Jung Sung Soo;Lee Doo Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.852-860
    • /
    • 2004
  • There are many standard methods for measuring vibration damping properties of the beam type material. Among them, three standards ASTM E 756, ISO 6721 and JIS G 0602, are compared. Loss factor and Young's modulus of the steel beam are evaluated by using five different methods and their results are compared. Logarithmic decay method and half-power bandwidth method are used to calculate the loss factor. It was observed that Young’s modulus is agree well, but loss factors are different from test to test. So the same test method must be applied to measure damping properties.

A Measurement of the Residual Stress and Young's Modulus of p+ Silicon (p+ 실리콘의 강성계수 및 잔류응력 측정)

  • Kim, Sang-Cheol;Jeong, Ok-Chan;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2524-2526
    • /
    • 1998
  • In this paper, the residual stress and young's modulus of the p+ thin film have been estimated by using the electrostatic resonators. The electrostatic plate resonator with four corrugated bridges and another with four flat ones have been fabricated. The deflection of the plate has been calculated under the induced tension and the residual stress and compared with the dynamic test results. When the young's modulus of the p+ silicon is 125 GPa. The estimated residual stresses of the flat and the corrugated bridges are about 15 MPa and less than 5 MPa, respectively. It has been confirmed that the corrugated structure releases the residual tensile stress resulted from the heavy boron diffusion process.

  • PDF

Driving Characteristics of the Cross Type Ultrasonic Rotary Motor Dependant on the Materials of the Stator (재질의 변화에 따른 Cross형 초음파 회전모터의 구동특성)

  • Chong, Hyon-Ho;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.354-356
    • /
    • 2005
  • Novel structure ultrasonic motors which have cross type stator were designed and fabricated. Driving characteristics of the motors were analyzed and measured by changing the materials of the stator. This ultrasonic motor has stator with hollowed cross bar and the stator rotate the rotor using elliptical displacement of the inside tips. This motion is generated by lateral vibration mode of cross bars. This stator was analyzed by finite element analysis and the ultrasonic motors were made by analyzed results. The larger displacements were obtained, when the Young's modulus was increased and the Poisson's ratio was decreased. The fabricated one has high speed in large Poisson's ratio and Young's modulus. And the torque was increased in high Young's modulus.

  • PDF

Computational continuum modelling to analysis the dynamic and static stability of a cantilever nano-scale system

  • Jiangjiang Li
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.77-96
    • /
    • 2023
  • Calculating size-dependent mechanical properties of the nano-scale materials usually involves cumbersome numerical and theoretical works. In this paper, we aim to present a closed-form relation to calculate the length-dependent Young's modulus of carbon nanotubes (CNTs) based on nonlocal elasticity theory. In this regard, a single wall carbon nanotube (SWCNT) is considered as a rod structure and the governing nonlocal equations are developed under uniaxial tensile load. The equations are solved using analytical methods and strain distribution, total displacement and the size-dependent equivalent Young's modulus are obtained. Further, the results are compared with the molecular dynamics results from the literature. The outcome indicates that the calculated relations are coincident with the molecular dynamics results.

Measurement of residual stresses in injection molded short fiber composites considering anisotropy and modulus variation

  • Kim, Sang-Kyun;Lee, Seok-Won;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.3
    • /
    • pp.107-114
    • /
    • 2002
  • Residual stress distribution in injection molded short fiber composites is determined by using the layer-removal method. Polystyrene is mixed with carbon fibers of 3% volume fraction (4.5% weight fraction) in an extruder and the tensile specimen is injection-molded. The layer-removal process, in which removing successive thin uniform layers of the material from the surface of the specimen by a milling machine, is employed and the resulting curvature is acquired by means of an image processing. The isotropic elastic analysis proposed by Treuting and Read which assumes a constant Yaung’s modulus in the thickness direction is one of the most frequently used methods to determine residual stresses. However, injection molded short fiber composites experience complex fiber orientation during molding and variation of Yaung’s modulus distribution occurs in the specimen. In this study, variation of Yaung’s modulus with respect to the thickness direction is considered for calculation of the residual stresses as proposed by White and the result is compared with that by assuming constant modulus. Residual stress distribution obtained from this study shows a typical stress profile of injection-molded products as reported in many literatures. Young’s modulus distribution is predicted by using numerical methods instead of experimental results. For the numerical analysis of injection molding process, a hybrid FEM/FDM method is used in order to predict velocity, temperature field, fiber orientation, and resulting mechanical properties of the specimen at the end of molding.

Laboratory Performance Evaluation of High Modulus Asphalt Mixes for Long-Life Asphalt Pavements (장수명 아스팔트 포장용 고강성 혼합물의 실내 공용성 평가)

  • Kang, Min Gyun;Lee, Jung Hun;Lee, Hyun Jong;Choi, Ji Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.73-79
    • /
    • 2006
  • A major purpose of this study is to develop high modulus asphalt mixtures for perpetual asphalt pavements which can save maintenance cost by increasing the design and performance periods of the pavements. Various physical and mechanical laboratory tests are performed for the high modulus asphalt binder developed in this study. The test results show that the properties of the high modulus binder are similar to those of the French high modulus binders. In addition to the binder tests, various performance tests are conducted for the high modulus and conventional mixtures. The dynamic modulus test results indicate that the dynamic modulus values of the high modulus mixtures are higher than those of the conventional mixtures by 10~15% at $5^{\circ}C$, 20~25% at $15^{\circ}C$ and 100% at $30^{\circ}C$. It is observed from the performance tests that the high modulus mixtures yield better fatigue, rutting and moisture damage performance than the conventional mixtures.

A Study on Estimation of deformation Modulus with Field Test Results (현장시험결과를 이용한 지반의 변형계수 추정에 관한 연구)

  • Chun, Byung-Sik;Lee, Young-Chul;Song, Chi-Yong;Seo, Deok-Dong;Lee, Soung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1245-1251
    • /
    • 2005
  • The deformation modulus is an important variable which can be used to predict settlement of structures, analyze horizontal directions of piles and design roads. Though to predict deformation modulus relationships using standard penentration test N-value and undrained shear strength were suggested , these relationships are not appropriate in domestic areas because these relationships are based on foreign areas. Therefore, in this study, with field test results, reasonable equations in domestic area are suggested to estimate deformation modulus.

  • PDF

Measurement of Loss Factor and Young's Modulus of ABS and PP Specimens by Using a Speaker (스피커를 이용한 ABS와 PP의 손실계수 및 영률 측정)

  • Jeon, Byeong Su;Jung, Sung Soo;Lee, Jong Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.724-730
    • /
    • 2014
  • It is essential to control noise and vibration in various industrial fields. In the automobile industry, various plastics have been developed and replaced metallic materials in order to reduce mass and vibration effectively. In this study, we measured and analyzed the Young's moduli and the loss factors of Acrylonitrile butadiene styrene(ABS) and Polypropylene(PP). In order to solve the fundamental error to determine the two quantities, a loudspeaker was used instead of conventional electromagnetic devices to generate bending motion to the specimens and a laser vibrometer was also used in detection of vibration signal of the specimen. The measured Young's moduli and loss factors of the ABS specimen were nearly constant as the temperature($-10{\sim}60^{\circ}C$) was increased. The loss factor of PP specimen showed peak value at $20^{\circ}C$ and it means that there is glass transition for the PP specimen. Young's modulus of PP specimen was linearly decreased as the temperature was increased.

Influence of Hwangto on the Mechanical Properties of Wood Flour Reinforced High Density Polyethylene (HDPE) Composites

  • Lee, Sun-Young;Doh, Geum-Hyun;Kang, In-Aeh;Wu, Qinglin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.69-78
    • /
    • 2007
  • The mechanical properties of wood flour, Hwangto (325 and 1,400 mesh per 25,4 mm) and coupling agent-reinforced HDPE composites were investigated in this study. Hwangto and maleated polyethylene (MAPE) were used as an inorganic filler and a coupling agent, respectively. The addition of Hwangto and MAPE to virgin HDPE also increased the Young's modulus in the smaller degree. The addition of wood flour and Hwangto to virgin HDPE increased the tensile strength, due to the high uniform dispersion of HDPE by high surface area of Hwangto in HDPE and wood flour. MAPE also significantly increased the tensile strength. When wood flour was added, there was no notable difference on the tensile properties, in terms of Hwangto particle size. Hwangto also improved the flexural modulus and strength of reinforced HDPE composites. With different particle sizes of Hwangto, there was no considerable difference in flexural modulus and strength of reinforced HDPE composites. The addition of Hwangto showed slightly lower impact strength than that of wood flour. However, the particle size of Hwangto showed no significant effect on the impact strength of reinforced composites. In conclusion, reinforced HDPE composites with organic and inorganic fillers provide highly improved mechanical properties over virgin HDPE.

Deformation Behaviour of Metamorphic Tuff from Plate Loading Test

  • Lee, Young-Nam;Suh, Young-Ho;Kim, Dae-Young
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.87-100
    • /
    • 1997
  • This paper presents the results of plate loading test and discontinuum analysis, carried out to study the deformation behaviour and determine the deformation modulus of !rletamorphic andesitic tuff found at the site of a underground oil storage facility in Korea. In the plate loading test, the maximum pressure of 14MPa was applied to the bedrock by using a flat jack(1m in diameter) and the rock anchor system for the reaction against the applied pressure. The values of deformation modulus obtained from this test were compared with those of laboratory test, biaxial test and pressuremeter test. The deformation modulus from plate loading test was generally about half of the intact rock modulus, and the mass modulus of the bedrock at the test site may be affected by discontinuities and ranges between 25 and 350pa. Discontinuum analysis was also performed to simulate plate loading test and study the influence of discontinuities on the deformability of rock mass by simulating the presence of joints at the test area.

  • PDF