• 제목/요약/키워드: Yield strength. Elastic modulus

검색결과 90건 처리시간 0.021초

The use of river sand for fine aggregate in UHPC and the effect of its particle size

  • Kang, Su-Tae
    • Advances in concrete construction
    • /
    • 제10권5호
    • /
    • pp.431-441
    • /
    • 2020
  • For the purpose of improving the properties of UHPC as well as the economic efficiency in production of the material, Availability of river sands as fine aggregate instead of micro silica sand were investigated. Four different sizes of river sands were considered. Using river sand instead of micro silica sand increased the flowability, and decreased the yield stress and plastic viscosity in rheological properties, and the effect was higher with larger particle size of river sand. It was demonstrated by analyses based on the packing density. In the results of compressive strength and elastic modulus, even though river sand was not as good as micro silica sand, it could provide high strength of over 170 MPa and elastic modulus greater than 40 GPa. The difference in compressive strength depending on the size of river sand was explained with the concept of maximum paste thickness based on the packing density of aggregate. The flexural performance with river sand also presented relatively lower resistance than micro silica sand, and the reduction was greater with larger particle size of river sand. The flexural performance was proven to be also influenced by the difference in the fiber orientation distribution due to the size of river sand.

나노압입공정 해석에서 재료의 탄소성 특성 도출을 위한 대표변형률의 결정과 Dao의 Reverse 해석의 향상 (Improvement of Dao's Reverse Analysis and Determination of Representative Strain for Extracting Elastic-Plastic Properties of Materials in Analysis of Nanoindentation)

  • 이정민;이찬주;김병민
    • 대한기계학회논문집A
    • /
    • 제32권2호
    • /
    • pp.105-118
    • /
    • 2008
  • The newly developed analysis method for nanoindentation load-displacement curves are focused on not only obtaining elastic modulus and hardness values but also other mechanical properties, such as yield strength and strain hardening properties. Dao et al. developed a forward and reverse algorithm to extract the elasto-plastic properties of materials from the load-displacement curves obtained in nanoindentation test. These algorithms were only applicable for engineering metals (Poisson#s ratio 0.3) using the equivalent conical indenter of the Berkovich. However, the applicable metals are substantially limited because range of used in the finite element analysis is narrow. This study is designed to expand range of the applicable metals in the reverse algorithms established by Dao et al. and to improve the accuracy of that for extracting the elasto-plastic properties of materials. In this study, a representative strain was assumed to vary according to specific range of $E^*/{\sigma}_r$ and was defined as function of $E^*/{\sigma}_r$. Also, an initial unloading slope in reverse algorithms improved in this study was not considered as independent parameters of the load-displacement curves. The mechanical properties of materials for finite element analysis were modeled with the elastic modulus, E, the yield strength, ${\sigma}_y$, and the strain hardening exponents, n. We showed that the representative strain (0.033) suggested by Dao et al. was no longer applicable above the $E^*/{\sigma}_r$ of 400 and depended on values of $E^*/{\sigma}_r$. From these results, we constructed the dimensionless functions, in where the initial unloading slope was not included, for engineering metals up to $E^*/{\sigma}_r$ of 1500. These functions allow us to determine the mechanical properties with greater accuracy than Dao#s study.

Effects of hydride precipitation on the mechanical property of cold worked zirconium alloys in fully recrystallized condition

  • Lee, Hoon;Kim, Kyung-min;Kim, Ju-Seong;Kim, Yong-Soo
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.352-359
    • /
    • 2020
  • The effects of hydrogen precipitation on the mechanical properties of Zircaloy-4 and Zirlo alloys were examined with uniaxial tensile tests at room temperature and at 400 ℃ and accompanying microstructural changes in the Zircaloy-4 and Zirlo alloy specimens were discussed. The elastic moduli of Zircaloy-4 and Zirlo alloys decreased with increasing hydrogen concentrations. Yield strengths of both materials tended to decrease gradually. The reductions of yield stress seems to be caused by the dissipation of yield point phenomena shown in stress-strain curves. Ultimate tensile strengths (UTS) of Zircaloy-4 and Zirlo slightly increased at low hydrogen contents, and then decreased when the concentrations exceeded 500 and 700 wppm, respectively. Uniform elongations were stable until 600 wppm and drops to 0% around 1400 wppm at room temperature.

반복하중(反復荷重)을 받는 흙의 역학적(力學的) 특성(特性) (Mechanical Properties of Soil under Repeated Load)

  • 천병식;박흥규
    • 대한토목학회논문집
    • /
    • 제10권4호
    • /
    • pp.113-122
    • /
    • 1990
  • 도로(道路)의 노반(路盤)에 교통하중(交通荷重)이 반복해서 가해질 경우 흙 구조물의 설계기준을 얻기 위해 현장시험이 행해지고 있으나, 본 연구는 지금까지 잘 알려지지 않은 흙의 동력학적(動力學的) 성질(性質), 특히 반복응력(反復應力)을 받을 때의 성질을 규명한 것으로 유변학적(流變學的) 모델 해석에 의해 흙의 항복응력(降伏應力) 탄성계수(彈性係數)를 구하고 이에 대한 반복응력재하의 영향에 대해서 고찰(考察)한 것이다. 항복응력(降伏應力)은 재하횟수가 많을 수록 경화(硬化) 효과(效果)가 현저하므로 그 값이 크고, 어느 재하횟수에 달하면 한계치에 접근한다. 또한 탄성계수(彈性係數)는 반복응력이 작은 경우에는 재하횟수가 많을수록 현저하게 증가하고, 반복응력이 커지면 반대로 감소한다.

  • PDF

콘크리트충전 강관기둥의 내화실험에 대한 고찰 -재하가열실험후의 강관 및 콘크리트 화재손상평가를 중심으로- (Evaluation on Fire Test for the Concrete Filled Steel Tube Column -Fire Damage Evaluation on Steel Tube and Concrete after a Fire Test-)

  • 박기창;최성모;김동규
    • 한국강구조학회 논문집
    • /
    • 제12권6호
    • /
    • pp.759-767
    • /
    • 2000
  • 본 연구는 화재발생후에 시간경과에 따른 콘크리트충전 강관기둥의 내력변화를 파악하고 인장강도시험을 통해 내화실험이전과 후의 항복강도, 인장강도, 평균연신율 및 탄성계수 등에 대하여 각 단계별 하중에 따른 변형률을 비교측정하였다. 화재를 입은 강관내의 충전콘크리트의 물성변화(압축강도 및 탄성계수시험)를 파악하기 위하여 화재실험후 강관중심부에서 코아시험체를 채취하여 압축강도를 측정하고 탄성계수의 측정은 응력에 의한 변형률을 측정하였으며, 대상실험체의 화재온도를 추정하기 위하여 시차열분석을 실시하였다. 이러한 실험결과로부터 얻어진 자료를 평가하여, 향후 콘크리트 충전강관의 내화설계 구조규준제정에 필요한 기초자료를 제시하는데 그 목적이 있다.

  • PDF

가속도계를 이용한 재료의 영계수 측정방법 (Measuring Young's Modulus of Materials by Using Accelerometer)

  • 손창호;박진호;윤두병;정의필;최영철
    • 한국소음진동공학회논문집
    • /
    • 제16권11호
    • /
    • pp.1158-1164
    • /
    • 2006
  • For the description of the elastic properties of linear objects a convenient parameter is the ratio of the stress to the strain, a parameter called the Young's modulus of the material. Young's modulus can be used to predict the elongation or compression of an object as long as the stress is less than the yield strength of the material. Conventional method for estimating Young's modulus measured the ratio of stress to corresponding strain below the proportional limit of a material using a tensile testing machine. But the method needs precision specimens and expensive equipment. In this paper, we proposed method for estimating Young's modulus using accelerometer. The basic idea comes from that the wave velocity is different as the Young's modulus. To obtain Young's modulus, a group velocity is obtained. It is difficult to measure group velocity. This is because plate medium has a dispersive characteristics which has different wave speed as frequency. In this paper, we used Wigner-Ville distribution to measure group velocity. To verify the proposed method, steel and acryl plate experiments have been performed. Experimental results show that the proposed method is powerful for estimating Young's modulus.

가속도계를 이용한 재료의 영계수 측정방법 (Measuring Young's Modulus of Materials by using Accelerometer)

  • 최영철;박진호;윤두병;손창호;황일순
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1027-1032
    • /
    • 2007
  • For the description of the elastic properties of linear objects a convenient parameter is the ratio of the stress to the strain, a parameter called the Young's modulus of the material. Young's modulus can be used to predict the elongation or compression of an object as long as the stress is less than the yield strength of the material. Conventional method for estimating Young's modulus measured the ratio of stress to corresponding strain below the proportional limit of a material using a tensile testing machine. But the method needs precision specimens and expensive equipment. In this paper, we proposed method for estimating Young's modulus using accelerometer. The basic idea comes from that the wave velocity is different as the Young's modulus. To obtain Young's modulus, a group velocity is obtained. It is difficult to measure group velocity. This is because plate medium has a dispersive characteristics which has different wave speed as frequency. In this paper, we used Wigner-Ville distribution to measure group velocity. To verify the proposed method, steel and acryl plate experiments have been performed. Experimental results show that the proposed method is powerful for estimating Young's modulus.

  • PDF

Analysis of restrained heated steel beams during cooling phase

  • Li, Guo-Qiang;Guo, Shi-Xiong
    • Steel and Composite Structures
    • /
    • 제9권3호
    • /
    • pp.191-208
    • /
    • 2009
  • Observations from experiments and real fire indicate that restrained steel beams have better fire-resistant capability than isolated beams. Due to the effects of restraints, a steel beam in fire condition can undergo very large deflections and the run away damage may be avoided. However disgusting damages may occur in the beam-to-column connections, which is considered to be mainly caused by the enormous axial tensile forces in steel beams resulted from temperature decreasing after fire dies out. Over the past ten years, the behaviour of restrained steel beams subjected to fire during heating has been experimentally and theoretically investigated in detail, and some simplified analytical approaches have been proposed. While the performance of restrained steel beams during cooling has not been so deeply studied. For the safety evaluation and repair of steel structures against fire, more detailed investigation on the behaviour of restrained steel beams subjected to fire during cooling is necessary. When the temperature decreases, the elastic modulus and yield strength of steel recover, and the contraction force in restrained steel beams will be produced. In this paper, an incremental method is proposed for analyzing the behaviour of restrained steel beams subjected to cooling. In each temperature decrement, the development of deformation and internal forces of a restrained beam is divided into four steps, in order to consider the effect of the recovery of the elastic modulus and strength of steel and the contraction force generated by temperature decrease in the beam respectively. At last, the proposed approach is validated by FE method.

Effects of Tungsten Addition on Tensile Properties of a Refractory Nb-l8Si-l0Ti-l0Mo-χW (χ=0, 5, 10 and 15 mot.%) In-situ Composites at 1670 K

  • 김진학;Tatsuo Tabaru;Hisatoshi Hirai
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.233-233
    • /
    • 1999
  • To investigate the effect of tungsten addition on mechanical properties, we prepared refractory (62χ)Nb-18Si-l00Mo-l0Ti-χW (χ=0, 5, 10 and 15 mol.%) in-situ composites by the conventional arc-casting technique, and then explored the microstructure, hardness and elastic modulus at ambient temperature and tensile properties at 1670 K. The microstructure consists of relatively fine (Nb, Mo, W, Ti)/sub 5/Si₃, silicide and a Nb solid solution matrix, and the fine eutectic microstructure becomes predominant at a Si content of around 18 mol.%. The hardness of (Nb, Mo, W, Ti(/sub 5/Si₃, silicide in a W-free sample is 1680 GPa, and goes up to 1980 GPa in a W 15 mol.% sample. The hardness, however, of Nb solid solution does not exhibit a remarkable difference when the nominal W content is increased. The elastic modulus shows a similar tendency to the hardness. The optimum tensile properties of the composites investigated are achieved at W 5 mol.% sample, which exhibits a relatively good ultimate strength of 230 MPa and an excellent balance of yield strength of 215 MPa, and an elongation of 3.7%. The SEM fractography generally indicates a ductile fracture in the W-free sample, and a cleavage rupture in W-impregnated ones.

단축 인장에 의한 SU-8박막의 기계적 물성 측정 (Measurement of mechanical properties of SU-8 thin film by tensile testing)

  • 백동천;박태상;이순복;이낙규
    • 반도체디스플레이기술학회지
    • /
    • 제3권2호
    • /
    • pp.23-26
    • /
    • 2004
  • Thin film is one of the most general structures used in micro-electro-mechanical systems (MEMS). To measure the mechanical properties of SU-8 film, tensile testing was adopted which offers not only elastic modulus but also yield strength and plastic deformation by load-displacement curve. Tensile testing system was constructed with linear guided servo motor for actuation, load cell for force measurement and dual microscope for strain measurement.

  • PDF