DOI QR코드

DOI QR Code

Effects of hydride precipitation on the mechanical property of cold worked zirconium alloys in fully recrystallized condition

  • Lee, Hoon (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Kyung-min (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Ju-Seong (Korea Atomic Energy Research Institute) ;
  • Kim, Yong-Soo (Department of Nuclear Engineering, Hanyang University)
  • Received : 2019.01.08
  • Accepted : 2019.07.30
  • Published : 2020.02.25

Abstract

The effects of hydrogen precipitation on the mechanical properties of Zircaloy-4 and Zirlo alloys were examined with uniaxial tensile tests at room temperature and at 400 ℃ and accompanying microstructural changes in the Zircaloy-4 and Zirlo alloy specimens were discussed. The elastic moduli of Zircaloy-4 and Zirlo alloys decreased with increasing hydrogen concentrations. Yield strengths of both materials tended to decrease gradually. The reductions of yield stress seems to be caused by the dissipation of yield point phenomena shown in stress-strain curves. Ultimate tensile strengths (UTS) of Zircaloy-4 and Zirlo slightly increased at low hydrogen contents, and then decreased when the concentrations exceeded 500 and 700 wppm, respectively. Uniform elongations were stable until 600 wppm and drops to 0% around 1400 wppm at room temperature.

Keywords

References

  1. J. Kim, H. Yoon, D. Kook, Y. Kim, A study on the initial characteristics of domestic spent nuclear fuels for long term dry storage, Nucl. Eng. Technol. 45 (3) (2013) 377-384. https://doi.org/10.5516/NET.06.2012.082
  2. J.S. Kim, Y.J. Kim, D.H. Kook, Y.S. Kim, A study on hydride reorientation of Zircaloy-4 cladding tube under stress, J. Nucl. Mater. 456 (2015) 246-252.
  3. T. Sugiyama, M. Umeda, T. Fuketa, H. Sasajima, Y. Udagawa, F. Nagase, Failure of high burnup fuels under reactivity-initiated accident conditions, Ann. Nucl. Energy 36 (3) (2009) 380-385. https://doi.org/10.1016/j.anucene.2008.12.003
  4. J.B. Bai, C. Prioul, D. Francois, Hydride embrittlement in ZIRCALOY-4 plate: Part I. Influence of microstructure on the hydride embrittlement in ZIRCALOY-4 at $20^{\circ}C$ and $350^{\circ}C$, Metall. Mater. Trans. A 25 (6) (1994) 1185-1197. https://doi.org/10.1007/BF02652293
  5. H.H. Hsu, M.F. Chiang, Y.C. Chen, The influence of hydride on fracture toughness of recrystallized Zircaloy-4 cladding, J. Nucl. Mater. 447 (1-3) (2014) 56-62. https://doi.org/10.1016/j.jnucmat.2013.12.028
  6. C. Vitanza, A review and interpretation of ria experiments, Nucl. Eng. Technol. 39 (5) (Oct. 2007) 591-602. https://doi.org/10.5516/NET.2007.39.5.591
  7. J.S. Kim, T.H. Kim, D.H. Kook, Y.S. Kim, Effects of hydride morphology on the embrittlement of Zircaloy-4 cladding, J. Nucl. Mater. 456 (2015) 235-245.
  8. F. Nagase, T. Fuketa, Investigation of hydride rim effect on failure of zircaloy-4 cladding with tube burst test, J. Nucl. Sci. Technol. 42 (1) (2005) 58-65. https://doi.org/10.3327/jnst.42.58
  9. J.S. Kim, J.D. Hong, Y.S. Yang, D.H. Kook, Rod internal pressure of spent nuclear fuel and its effects on cladding degradation during dry storage, J. Nucl. Mater. 492 (2017) 253-259.
  10. K.J. Geelhood, W. Luscher, Frapcon-4.0: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup, U.S. Dep. Energy, 2015.
  11. D.S. Stafford, Multidimensional simulations of hydrides during fuel rod lifecycle, J. Nucl. Mater. 466 (2015) 362-372. https://doi.org/10.1016/j.jnucmat.2015.06.037
  12. O. Courty, A.T. Motta, J.D. Hales, Modeling and simulation of hydrogen behavior in Zircaloy-4 fuel cladding, J. Nucl. Mater. 452 (1-3) (2014) 311-320. https://doi.org/10.1016/j.jnucmat.2014.05.013
  13. S. Oh, C. Jang, J.H. Kim, Y.H. Jeong, Effect of Nb on hydride embrittlement of Zr-xNb alloys, Mater. Sci. Eng. A 527 (6) (2010) 1306-1313. https://doi.org/10.1016/j.msea.2009.11.024
  14. R.P. Siqueira, H.R.Z. Sandim, T.R. Oliveira, D. Raabe, Composition and orientation effects on the final recrystallization texture of coarse-grained Nbcontaining AISI 430 ferritic stainless steels, Mater. Sci. Eng. A 528 (9) (2011) 3513-3519. https://doi.org/10.1016/j.msea.2011.01.007
  15. J.W. Martin, Precipitation Hardening, Butterworth-Heinemann, 1998.
  16. US NRC, Spent Fuel Project Office, Interim Staff Guidance-11, Revision 3, 2003.
  17. Z.L. Pan, M.P. Puls, I.G. Ritchie, Measurement of hydrogen solubility during isothermal charging in a Zr alloy using an internal friction technique, J. Alloy. Comp. 211-212 (C) (1994) 245-248.
  18. S. Yamanaka, et al., Characteristics of zirconium hydrogen solid solution, J. Alloy. Comp. 372 (1-2) (Jun. 2004) 129-135.
  19. M.P. Puls, S.Q. Shi, J. Rabier, Experimental studies of mechanical properties of solid zirconium hydrides, J. Nucl. Mater. 336 (1) (2005) 73-80. https://doi.org/10.1016/j.jnucmat.2004.08.016
  20. J. Xu, S.Q. Shi, Investigation of mechanical properties of $\varepsilon$-zirconium hydride using micro- and nano-indentation techniques, J. Nucl. Mater. 327 (2-3) (2004) 165-170. https://doi.org/10.1016/j.jnucmat.2004.02.004
  21. S. Shi, M.P. Puls, Fracture strength of hydride precipitates in $Zr{\pm}2$. 5Nb alloys 275 (1999) 312-317.
  22. C.S. Fernanda, C. Alho, J.F. Labuz, Experiments on effective elastic modulus of two-dimensional solids with cracks and holes 33 (28) (1996) 4119-4130. https://doi.org/10.1016/0020-7683(95)00269-3
  23. H.K. Birnbaum, P. Sofronis, Hydrogen-enhanced localized plasticity-a mechanism for hydrogen-related fracture 176 (1994) 191-202. https://doi.org/10.1016/0921-5093(94)90975-X
  24. N. Rupa, M. Clavel, P. Bouffioux, C. Domain, A. Legris, About the mechanisms governing the hydrogen effect on visrnplastieity of unirradiated fully annealed zircaloy-4 sheet, Zircon. Nucl. Ind. Thirteen. Int. Symp. ASTM STP 1423 (2002) 811-836.
  25. H. Li, et al., Hydride precipitation and its influence on mechanical properties of notched and unnotched Zircaloy-4 plates, J. Nucl. Mater. 436 (1-3) (2013) 84-92. https://doi.org/10.1016/j.jnucmat.2013.01.330
  26. J.H. Huang, S.P. Huang, Effect of hydrogen contents on the mechanical properties of Zircaloy-4, J. Nucl. Mater. 208 (1-2) (1994) 166-179. https://doi.org/10.1016/0022-3115(94)90208-9
  27. S.-C. Lin, M. Hamasaki, Y.-D. Chuang, The effect of dispersion and spheroidization treatment of $\delta$ zirconium hydrides on the mechanical properties of zircaloy, Nucl. Sci. Eng. 71 (3) (1979) 251-266. https://doi.org/10.13182/NSE79-A19062
  28. M. Grange, J. Besson, E. Andrieu, Anisotropic behavior and rupture of hydrided ZIRCALOY-4 sheets, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 31 (3) (2000) 679-690.
  29. B.V. Cockeram, K.S. Chan, In situ studies and modeling the fracture of Zircaloy-4, J. Nucl. Mater. 393 (3) (2009) 387-408. https://doi.org/10.1016/j.jnucmat.2009.06.033
  30. M. Le Saux, J. Besson, S. Carassou, C. Poussard, X. Averty, Behavior and failure of uniformly hydrided Zircaloy-4 fuel claddings between $25^{\circ}C$ and $480^{\circ}C$ under various stress states, including RIA loading conditions, Eng. Fail. Anal. 17 (3) (2010) 683-700. https://doi.org/10.1016/j.engfailanal.2009.07.001
  31. Z.X. Wu, Y.W. Zhang, M.H. Jhon, D.J. Srolovitz, Anatomy of nanomaterial deformation: grain boundary sliding, plasticity and cavitation in nanocrystalline Ni, Acta Mater. 61 (15) (2013) 5807-5820. https://doi.org/10.1016/j.actamat.2013.06.026
  32. S.M. Myers, et al., Hydrogen interactions with defects in crystalline solids, Rev. Mod. Phys. 64 (2) (1992) 559-617. https://doi.org/10.1103/RevModPhys.64.559

Cited by

  1. Hydride embrittlement resistance of Zircaloy-4 and Zr-Nb alloy cladding tubes and its implications on spent fuel management vol.559, 2020, https://doi.org/10.1016/j.jnucmat.2021.153393