References
- J. Kim, H. Yoon, D. Kook, Y. Kim, A study on the initial characteristics of domestic spent nuclear fuels for long term dry storage, Nucl. Eng. Technol. 45 (3) (2013) 377-384. https://doi.org/10.5516/NET.06.2012.082
- J.S. Kim, Y.J. Kim, D.H. Kook, Y.S. Kim, A study on hydride reorientation of Zircaloy-4 cladding tube under stress, J. Nucl. Mater. 456 (2015) 246-252.
- T. Sugiyama, M. Umeda, T. Fuketa, H. Sasajima, Y. Udagawa, F. Nagase, Failure of high burnup fuels under reactivity-initiated accident conditions, Ann. Nucl. Energy 36 (3) (2009) 380-385. https://doi.org/10.1016/j.anucene.2008.12.003
-
J.B. Bai, C. Prioul, D. Francois, Hydride embrittlement in ZIRCALOY-4 plate: Part I. Influence of microstructure on the hydride embrittlement in ZIRCALOY-4 at
$20^{\circ}C$ and$350^{\circ}C$ , Metall. Mater. Trans. A 25 (6) (1994) 1185-1197. https://doi.org/10.1007/BF02652293 - H.H. Hsu, M.F. Chiang, Y.C. Chen, The influence of hydride on fracture toughness of recrystallized Zircaloy-4 cladding, J. Nucl. Mater. 447 (1-3) (2014) 56-62. https://doi.org/10.1016/j.jnucmat.2013.12.028
- C. Vitanza, A review and interpretation of ria experiments, Nucl. Eng. Technol. 39 (5) (Oct. 2007) 591-602. https://doi.org/10.5516/NET.2007.39.5.591
- J.S. Kim, T.H. Kim, D.H. Kook, Y.S. Kim, Effects of hydride morphology on the embrittlement of Zircaloy-4 cladding, J. Nucl. Mater. 456 (2015) 235-245.
- F. Nagase, T. Fuketa, Investigation of hydride rim effect on failure of zircaloy-4 cladding with tube burst test, J. Nucl. Sci. Technol. 42 (1) (2005) 58-65. https://doi.org/10.3327/jnst.42.58
- J.S. Kim, J.D. Hong, Y.S. Yang, D.H. Kook, Rod internal pressure of spent nuclear fuel and its effects on cladding degradation during dry storage, J. Nucl. Mater. 492 (2017) 253-259.
- K.J. Geelhood, W. Luscher, Frapcon-4.0: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup, U.S. Dep. Energy, 2015.
- D.S. Stafford, Multidimensional simulations of hydrides during fuel rod lifecycle, J. Nucl. Mater. 466 (2015) 362-372. https://doi.org/10.1016/j.jnucmat.2015.06.037
- O. Courty, A.T. Motta, J.D. Hales, Modeling and simulation of hydrogen behavior in Zircaloy-4 fuel cladding, J. Nucl. Mater. 452 (1-3) (2014) 311-320. https://doi.org/10.1016/j.jnucmat.2014.05.013
- S. Oh, C. Jang, J.H. Kim, Y.H. Jeong, Effect of Nb on hydride embrittlement of Zr-xNb alloys, Mater. Sci. Eng. A 527 (6) (2010) 1306-1313. https://doi.org/10.1016/j.msea.2009.11.024
- R.P. Siqueira, H.R.Z. Sandim, T.R. Oliveira, D. Raabe, Composition and orientation effects on the final recrystallization texture of coarse-grained Nbcontaining AISI 430 ferritic stainless steels, Mater. Sci. Eng. A 528 (9) (2011) 3513-3519. https://doi.org/10.1016/j.msea.2011.01.007
- J.W. Martin, Precipitation Hardening, Butterworth-Heinemann, 1998.
- US NRC, Spent Fuel Project Office, Interim Staff Guidance-11, Revision 3, 2003.
- Z.L. Pan, M.P. Puls, I.G. Ritchie, Measurement of hydrogen solubility during isothermal charging in a Zr alloy using an internal friction technique, J. Alloy. Comp. 211-212 (C) (1994) 245-248.
- S. Yamanaka, et al., Characteristics of zirconium hydrogen solid solution, J. Alloy. Comp. 372 (1-2) (Jun. 2004) 129-135.
- M.P. Puls, S.Q. Shi, J. Rabier, Experimental studies of mechanical properties of solid zirconium hydrides, J. Nucl. Mater. 336 (1) (2005) 73-80. https://doi.org/10.1016/j.jnucmat.2004.08.016
-
J. Xu, S.Q. Shi, Investigation of mechanical properties of
$\varepsilon$ -zirconium hydride using micro- and nano-indentation techniques, J. Nucl. Mater. 327 (2-3) (2004) 165-170. https://doi.org/10.1016/j.jnucmat.2004.02.004 -
S. Shi, M.P. Puls, Fracture strength of hydride precipitates in
$Zr{\pm}2$ . 5Nb alloys 275 (1999) 312-317. - C.S. Fernanda, C. Alho, J.F. Labuz, Experiments on effective elastic modulus of two-dimensional solids with cracks and holes 33 (28) (1996) 4119-4130. https://doi.org/10.1016/0020-7683(95)00269-3
- H.K. Birnbaum, P. Sofronis, Hydrogen-enhanced localized plasticity-a mechanism for hydrogen-related fracture 176 (1994) 191-202. https://doi.org/10.1016/0921-5093(94)90975-X
- N. Rupa, M. Clavel, P. Bouffioux, C. Domain, A. Legris, About the mechanisms governing the hydrogen effect on visrnplastieity of unirradiated fully annealed zircaloy-4 sheet, Zircon. Nucl. Ind. Thirteen. Int. Symp. ASTM STP 1423 (2002) 811-836.
- H. Li, et al., Hydride precipitation and its influence on mechanical properties of notched and unnotched Zircaloy-4 plates, J. Nucl. Mater. 436 (1-3) (2013) 84-92. https://doi.org/10.1016/j.jnucmat.2013.01.330
- J.H. Huang, S.P. Huang, Effect of hydrogen contents on the mechanical properties of Zircaloy-4, J. Nucl. Mater. 208 (1-2) (1994) 166-179. https://doi.org/10.1016/0022-3115(94)90208-9
-
S.-C. Lin, M. Hamasaki, Y.-D. Chuang, The effect of dispersion and spheroidization treatment of
$\delta$ zirconium hydrides on the mechanical properties of zircaloy, Nucl. Sci. Eng. 71 (3) (1979) 251-266. https://doi.org/10.13182/NSE79-A19062 - M. Grange, J. Besson, E. Andrieu, Anisotropic behavior and rupture of hydrided ZIRCALOY-4 sheets, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 31 (3) (2000) 679-690.
- B.V. Cockeram, K.S. Chan, In situ studies and modeling the fracture of Zircaloy-4, J. Nucl. Mater. 393 (3) (2009) 387-408. https://doi.org/10.1016/j.jnucmat.2009.06.033
-
M. Le Saux, J. Besson, S. Carassou, C. Poussard, X. Averty, Behavior and failure of uniformly hydrided Zircaloy-4 fuel claddings between
$25^{\circ}C$ and$480^{\circ}C$ under various stress states, including RIA loading conditions, Eng. Fail. Anal. 17 (3) (2010) 683-700. https://doi.org/10.1016/j.engfailanal.2009.07.001 - Z.X. Wu, Y.W. Zhang, M.H. Jhon, D.J. Srolovitz, Anatomy of nanomaterial deformation: grain boundary sliding, plasticity and cavitation in nanocrystalline Ni, Acta Mater. 61 (15) (2013) 5807-5820. https://doi.org/10.1016/j.actamat.2013.06.026
- S.M. Myers, et al., Hydrogen interactions with defects in crystalline solids, Rev. Mod. Phys. 64 (2) (1992) 559-617. https://doi.org/10.1103/RevModPhys.64.559
Cited by
- Hydride embrittlement resistance of Zircaloy-4 and Zr-Nb alloy cladding tubes and its implications on spent fuel management vol.559, 2020, https://doi.org/10.1016/j.jnucmat.2021.153393