Journal of the Korean Society of Hazard Mitigation
/
v.11
no.3
/
pp.127-132
/
2011
In this study, calculation results of sediments yield prediction models were compared with the amount of dredging data for the Inje, Gangwon mountain region of Korea. MSDPM and LADMP were used as a sediments prediction model which was calibrated and modified to calculate the sediments yield of Korean mountain region. Both sediments yield prediction models were modified by using Threshold Maximum Rainfall Intensity and Total Minimum Rainfall Intensity and correction coefficient. After comparing with the amount of dredging, it was found that results of MSDPM is more accurate than the results of LADMP. Difference of results of MSDPM and the amount of dredging is 27.6% and difference of results of LADMP and the amount of dredging is 50.6%. Both sediments yield prediction models which were calibrated in this study can be used to calculate the sediments yield for the Korean mountain region.
Samaraweera, Amali Malshani;Boerner, Vinzent;Cyril, Hewa Waduge;Werf, Julius van der;Hermesch, Susanne
Asian-Australasian Journal of Animal Sciences
/
v.33
no.11
/
pp.1741-1754
/
2020
Objective: This study was conducted to estimate genetic parameters for milk yield traits using daily milk yield records from parlour data generated in an intensively managed commercial dairy farm with Jersey and Jersey-Friesian cows in Sri Lanka. Methods: Genetic parameters were estimated for first and second lactation predicted and realized 305-day milk yield using univariate animal models. Genetic parameters were also estimated for total milk yield for each 30-day intervals of the first lactation using univariate animal models and for daily milk yield using random regression models fitting second-order Legendre polynomials and assuming heterogeneous residual variances. Breeding values for predicted 305-day milk yield were estimated using an animal model. Results: For the first lactation, the heritability of predicted 305-day milk yield in Jersey cows (0.08±0.03) was higher than that of Jersey-Friesian cows (0.02±0.01). The second lactation heritability estimates were similar to that of first lactation. The repeatability of the daily milk records was 0.28±0.01 and the heritability ranged from 0.002±0.05 to 0.19±0.02 depending on day of milk. Pearson product-moment correlations between the bull estimated breeding values (EBVs) in Australia and bull EBVs in Sri Lanka for 305-day milk yield were 0.39 in Jersey cows and -0.35 in Jersey-Friesian cows. Conclusion: The heritabilities estimated for milk yield in Jersey and Jersey-Friesian cows in Sri Lanka were low, and were associated with low additive genetic variances for the traits. Sire differences in Australia were not expressed in the tropical low-country of Sri Lanka. Therefore, genetic progress achieved by importing genetic material from Australia can be expected to be slow. This emphasizes the need for a within-country evaluation of bulls to produce locally adapted dairy cows.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.199-199
/
2017
Sustainable wheat production is of paramount importance for attaining/maintaining the food self-sufficiency status of the rapidly growing nation of Pakistan. However, the average wheat yield per unit area has been dwindling in recent years and the climate-induced variations in rainfall patterns and temperature regimes, during the wheat growth period, are believed to be the reason behind this decline. Crop growth simulation models are powerful tools capable of playing pivotal role in evaluating the climate change impacts on crop yield or productivity. This study was aimed to predict the plausible variations in the wheat yield for future climatic trends so that possible mitigation strategies could be explored. For this purpose, Aquacrop model v. 4.0 was employed to simulate the wheat yield under present and future climatology of the largest agricultural province of Punjab in Pakistan. The data related to crop phenology, management and yield were collected from the experimental plots to calibrate and validate the model. The future climate projections were statistically downscaled from five general circulation models (GCMs) and compared with the base line climate from 1980 to 2010. The model was fed with the projected climate to simulate the wheat yield based on the RCP (representative concentration pathways) 4.5 and 8.5. Under the worst, most likely future scenario of temperature rise and rainfall reduction, the crop yield decreased and water footprint, especially blue, increased, owing to the elevated irrigation demands due to accelerated evapotranspiration rates. The modeling results provided in this study are expected to provide a basic framework for devising policy responses to minimize the climate change impacts on wheat production in the area.
Journal of Korean Society of Industrial and Systems Engineering
/
v.21
no.46
/
pp.127-136
/
1998
In many cases where the binomial distribution fails to apply to real world data it is because of more variability in the data than can be explained by that distribution. Several authers have proposed models that are useful in explaining extra-binomial variation. In this paper we point out a characterization of sequences of exchangeable Bernoulli variables which can be used to develop models which show more variability than the binomial. We give sufficient conditions which will yield such models and show how existing models can be continued to generate further models. A numerical example and simulation given.
Ma, Jong Won;Nguyen, Cong Hieu;Lee, Kyungdo;Heo, Joon
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.34
no.5
/
pp.525-534
/
2016
In South Korea, paddy rice has been consumed over the entire region and it is the main source of income for farmers, thus mathematical model for the estimation of rice yield is required for such decision-making processes in agriculture. The objectives of our study are to: (1) develop rice yield estimation model using Convolutional Neural Networks(CNN), (2) choose hyper-parameters for the model which show the best performance and (3) investigate whether CNN model can effectively predict the rice yield by the comparison with the model using Artificial Neural Networks(ANN). Weather and MODIS(The MOderate Resolution Imaging Spectroradiometer) products from April to September in year 2000~2013 were used for the rice yield estimation models and cross-validation was implemented for the accuracy assessment. The CNN and ANN models showed Root Mean Square Error(RMSE) of 36.10kg/10a, 48.61kg/10a based on rice points, respectively and 31.30kg/10a, 39.31kg/10a based on 'Si-Gun-Gu' districts, respectively. The CNN models outperformed ANN models and its possibility of application for the field of rice yield estimation in South Korea was proved.
KSCE Journal of Civil and Environmental Engineering Research
/
v.31
no.2A
/
pp.115-120
/
2011
The strength of reinforced concrete members has uncertainty from material properties of, concrete and reinforcements, section dimensions, and construction errors and so on. The accurate evaluation of these uncertainties is necessary to assure the reasonable safety. The uncertainties should be taken into account in design using structural reliability theory which requires probabilistic models for such uncertainties. In current Korean design code, most reliability evaluations were performed based on foreign data because of lack of local data. In this paper, the probabilistic models for yield strength of reinforcements were developed based on local data. The effects of various factors, nominal yield strength, diameter of reinforcements, and companies, on the models are also examined. According to data analysed, the effects of those factors are not significant. The probability model for yield strength of reinforcements in Korea can be expressed with Beta distribution based on collected data.
Kim, Chang Wan;Kim, Hyoung Seop;Yu, Kwon Kyu;Woo, Hyo Seop
KSCE Journal of Civil and Environmental Engineering Research
/
v.13
no.1
/
pp.131-140
/
1993
The major objective of this study is to develop practical methods for estimating sediment yield rates of medium size watersheds of which areas range from 200 to $2,000km^2$ In the first phase of the study that were presented in the companion paper followed by this paper, a methodology for estimating sediment yield rate was introduced and a total of 13 data points including eight sampled river-sediment data and five reservoir deposit data were collected. In this study, a three-parameter empirical model and a six-parameter rating model, both of which are based on empiricism, have been developed. By limited comparisons, the models developed in this study appear to be more reliable and applicable than the existing ones. According to the sediment yield data collected and the estimations by the models, meanwhile, the lowest value for the sediment yield rate of medium size watersheds in Korea is estimated to be about $100tons/km^2/yr$, and the maximum to be about $1,000tons/km^2/yr$.
The part I was for developing regression models to predict the moisture content, protein content and viscosity of brown and milled rice using Near Infrared(NIR) Reflectance analyzer. The purpose of this study(part II) is to measure fundamental data required for the prediction of rice quality, and to develop regression models to predict the protein content of brown and milled rice, brown rice yield from undried paddy powder by using Near Infrared(NIR) Reflectance analyzer. The results of this study were summarized as follows : The predicted values of protein contents obtained from the undried paddy powder were well correlated to the measured values from brown and milled rice. The predicted yields of brown rice from undried paddy powder were not well correlated to the lab measured values from dried paddy. Continuous study in wavelength selection and of constituent relationship is necessary for practical application.
Proceedings of the Korean Society for Agricultural Machinery Conference
/
1998.06b
/
pp.171-177
/
1998
The part Ⅰ was for developing regression models to predict the moisture content, protein content and viscosity of brown and milled rice using Near Unfrared (NIR) Reflectance analyzer. The purpose of this study(part Ⅱ) is to measure fundamental data required for the prediction of rice quality , and to develop regression models to predict the protein content of brown and milled rice, brown rice yield from undreid paddy powder by using Near Infrared (NIR) Reflectance analyzer. The results of this study were summarized as follows . The predicted values of protein contents obtained from the undried paddy powder were will correlated to the measured values from brown and milled rice. The predicted yields of brown rice from undried paddy powder were not well correlated to be lab measured values from dried paddy. Continuous study in wavelength selection and of constituent relationship is necessary for practical application.
Journal of the Society of Naval Architects of Korea
/
v.48
no.1
/
pp.42-48
/
2011
To define ice as a solid material, mathematical and physical characteristics and their application examples are investigated for several materials' yield functions which include isotropic elastic, isotropic elastic-plastic, classical Drucker-Prager, Drucker-Prager Cap, Heinonen's elliptic, Derradji-Aouat's elliptic, and crushable foam models. Taking into account brittle failure mode of ice subject to high loading rate or extremely low temperature, isotropic elastic model can be better practicable than isotropic elastic-plastic model. If a failure criterion can be properly determined, the elastic model will provide relatively practicable impact force history from ice-hull interactions. On the other hand, it is thought that the soil models can better predict the ice spalling mechanism, since they contain both terms of shear stress-induced and hydrostatic stress-induced failures in the yield function.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.