• 제목/요약/키워드: Yang Hui

검색결과 1,666건 처리시간 0.032초

양휘산법 (楊輝算法) 에 제시된 연환도 (連環圖) 의 일반화 (A generalization of Yeonhwando in Yang Hui Suanfa)

  • 박교식
    • 한국수학사학회지
    • /
    • 제29권4호
    • /
    • pp.219-232
    • /
    • 2016
  • In this paper, the problem posed in Yeonhwando is presumed like the following: "Make the sum of eight numbers in each 13 octagons to be 292, and the sum of four numbers in each 12 squares to be 146 using every numbers once from 1 to 72." Regarding this problem, in this paper, firstly, it is commented that there can be a lot of derived solutions from the Yang Hui's solution. Secondly, the Yang Hui's solution is generalized by using sequence 1 in which the sum of neighbouring two numbers are 73, 73-x by turns, and sequence 2 in which the sum of neighbouring two numbers are 73, 73+x by turns. Thirdly, the Yang Hui's solution is generalized by using the alternating method.

해도산경(海島算經)과 조선(朝鮮) 산학(算學) (Haidao Suanjing in Joseon Mathematics)

  • 홍성사;홍영희;김창일
    • 한국수학사학회지
    • /
    • 제32권6호
    • /
    • pp.259-270
    • /
    • 2019
  • Haidao Suanjing was introduced into Joseon by discussion in Yang Hui Suanfa (楊輝算法) which was brought into Joseon in the 15th century. As is well known, the basic mathematical structure of Haidao Suanjing is perfectly illustrated in Yang Hui Suanfa. Since the 17th century, Chinese mathematicians understood the haidao problem by the Western mathematics, namely an application of similar triangles. The purpose of our paper is to investigate the history of the haidao problem in the Joseon Dynasty. The Joseon mathematicians mainly conformed to Yang Hui's verifications. As a result of the influx of the Western mathematics of the Qing dynasty for the study of astronomy in the 18th century Joseon, Joseon mathematicians also accepted the Western approach to the problem along with Yang Hui Suanfa.

양휘산법(楊輝算法)과 중학교 수학의 방정식과 함수 영역의 비교

  • 이광연;방지혜;이유호
    • East Asian mathematical journal
    • /
    • 제27권2호
    • /
    • pp.243-259
    • /
    • 2011
  • The Yang-Hui arithmetic(楊輝算法) is a crucial textbook on mathematics for make out the Orient mathematics. In this thesis, compare the Yang-Hui arithmetic and the part of the equation and the function both in the middle school mathematics of the 7th Educational Curriculum Revision. As well, drawing a parallel between two things is the solution that had given in the Yang-Hui arithmetic and have given in the middle school textbook of the 7th Educational Curriculum Revision.

유익(劉益)과 홍정하(洪正夏)의 개방술(開方術) (Liu Yi and Hong Jung Ha's Kai Fang Shu)

  • 홍성사;홍영희;김영욱
    • 한국수학사학회지
    • /
    • 제24권1호
    • /
    • pp.1-13
    • /
    • 2011
  • 조선 산학에서 다항방정식의 해볍에 가장 큰 영향을 준 것은 ${\ll}$양휘산법(楊輝算法)${\gg}$의 전무비유승제첩법(田畝比類乘除捷法)에 인용된 유익(劉益)의 ${\ll}$의고근원(議古根源)${\gg}$에 들어있는 개방술(開方術)이다. 이 논문은 ${\ll}$양휘산법(楊輝算法)${\gg}$에 설명되어 있는 개방술(開方術)을 조사하여 증승개방법(增乘開方法)은 조립제법과 관계없이 이항식$(y+{\alpha})^n$을 전개하는 과정에서 이루어진 것을 밝혀낸다. 이어서 ${\ll}$양휘산법(楊輝算法)${\gg}$을 연구한 홍정하(洪正夏)(1684~?)가 그의 ${\ll}$구일집(九一集)${\gg}$에서 유익(劉益)-양휘(楊輝)와 ${\ll}$산학계몽(算學啓蒙)${\gg}$의 결과를 확장하여 증승개방법(增乘開方法)을 완벽하게 정리한 것을 밝혀낸다.

해외탐방

  • 양광희;김희선
    • 동위원소회보
    • /
    • 제19권1호
    • /
    • pp.90-100
    • /
    • 2004
  • PDF