해당 연구는 Insta evo 360° 카메라로 촬영한 Equirectangular 형태의 영상을 활용하여 보행자에게 위험한 차량을 구분한 후 실시간적으로 차량 접근 알림을 주는 시스템에 관한 연구이다. 360° 영상 속 위험 차량 탐지와 추적을 위해 파노라마와 일반도로 이미지 데이터 세트로 전이학습 된 You Look Only Once v5 (YOLOv5), 객체 추적 알고리즘 Simple Online and Realtime Tracking with a Deep Association Metric (DeepSORT), 그리고 실험을 통해 개발한 비 위험 차량 필터링 알고리즘을 활용한다. Insta evo 360° 카메라를 머리 위에 얹어 촬영한 영상을 개발한 최종 시스템에 적용한 결과, 약 90% 정확도로 영상에서 비 위험 차량과 위험 차량을 구분할 수 있고, 위험 차량의 경우 차량의 방향을 시각적으로 알려줄 수 있다. 본 연구를 바탕으로 보행자 시야각 외부의 위험 차량에 대한 경고 알림을 주어 보행자 교통사고 발생 가능성을 줄이고, 전방위를 볼 수 있는 360° 카메라의 활용 분야가 보행 안전 시스템뿐만 아니라 더 다양해질 것으로 기대한다.
Infrared cameras are widely used in recent research for automatic monitoring the abnormal behaviors of the pig. However, when deployed in real pig farms, infrared cameras always get polluted due to the harsh environment of pig farms which negatively affects the performance of pig monitoring. In this paper, we propose a real-time noise-robust infrared camera-based pig automatic monitoring system to improve the robustness of pigs' automatic monitoring in real pig farms. The proposed system first uses a preprocessor with a U-Net architecture that was trained as a GAN generator to transform the noisy images into clean images, then uses a YOLOv5-based detector to detect pigs. The experimental results show that with adding the preprocessing step, the average pig detection precision improved greatly from 0.639 to 0.759.
Park, Yeo Chan;Kwak, Kyoung Min;Kim, Bum Jun;Park, Se Hyeon;Jung, Jae Hun;Joo, Sang Young;Hwang, Jung Ho
Annual Conference of KIPS
/
2022.11a
/
pp.992-994
/
2022
본 논문에서는 시각장애인의 안내견을 위한 인공지능을 활용한 객체 인식 기반 과속 탐지 알고리즘을 제안한다. 이는 안내견이 도로 상에서 이동용 장치를 인식하는 것을 도와줌으로써 위험 요소 탐지 능력을 향상시킬 수 있고, 시각장애인의 안전을 보장할 수 있다. 인식 시스템은 Yolov5를 활용하여 사물 학습 과정을 진행하였고, 이동용 물체의 인식 과정을 통해 속도 측정 및 주변 위험 요소를 구분하여 판단하게 하였다. 판단된 정보는 안내견에게 교육된 신호로 전달되고, 시각장애인을 안전하게 인솔하여 도로상의 사고를 사전에 예방할 것으로 기대된다.
최근 인건비보다 저렴하게 사용할 수 있는 자율주행 로봇에 대한 수요가 증가하고 있다. 팬데믹의 영향으로 마스크 착용과 체온 측정이 의무화되어 키오스크, 체온 측정기와 같은 비대면 서비스의 수요 또한 증가하였다. 하지만 이러한 기능들은 각기 다른 기계에서 독립적으로 사용되며, 현재 보급된 자율주행 로봇을 병원에서 사용하기에는 적합하지 않다고 판단하였다. 본 연구에서 개발한 마스크 착용 여부 확인, 체온 확인, 자율주행을 활용한 안내 기능을 탑재한 인공지능 병원 안내 로봇을 통해 의료진의 업무 효율화 및 잠재적 비용 감소 효과를 기대한다. 본 연구에서는 마스크 착용 여부 확인을 위해 사용한 YOLOv5 알고리즘 훈련 결과를 통하여 높은 성능을 확인하였고 열화상 카메라를 사용한 체온 측정 알고리즘을 개발하였다. 또한, 실내 자율주행 실험을 통하여 Cartographer, Navigation 기능이 정상적으로 작동함을 확인하였다.
우리나라의 무역 활동을 처리하는 항만은 국가 주요시설로 보안에 만전을 기하고 있다. 그러나 항만의 면적이 넓고 복잡하기 때문에 사각지대가 존재하고 사각지대에서의 불법행위 단속 건수는 매년 증가하고 있다. 이에 항만의 보안 강화를 위한 대책이 필요하다. 본 논문은 항만의 상황을 이동형 CCTV에 부착된 IoT 센서들로 인식하여 YOLOv5 딥러닝 모델로 분석한 후 웹 대시보드에 시각화하는 항만 보안 시스템을 제안한다. 이동형 CCTV는 특정 위치로 직접 이동할 수 있어 거리에 따라 해상도가 낮아지는 기존 CCTV의 단점을 보완할 수 있다. 또한 해당 시스템은 주변에서 쉽게 구할 수 있는 장비들과 오픈소스 라이브러리를 활용하기 때문에 다른 보안장비들에 비해 효율적인 비용으로 높은 보안 효과를 얻을 수 있다는 강점을 지닌다. 본 시스템은 항만시설뿐 아니라 군사시설, 물류시설 등 보안을 중요시하는 다른 분야에 확대 적용될 수 있다는 점에서 의의가 있다.
In recent years, the growing popularity of dogs due to the benefits they bring their owners has contributed to the increase of the number of dogs raised. For owners, it is their responsibility to ensure their dogs' health and safety. However, it is challenging for them to continuously monitor their dogs' activities, which are important to understand and guarantee their wellbeing. In this work, we introduce a camera-based monitoring system to help owners automatically monitor their dogs' activities. The system receives sequences of RGB images and uses YOLOv7 to detect the dog presence, and then applies post-processing to perform dog-centered image cropping on each input sequence. The optical flow is extracted from each sequence, and both sequences of RGB and flow are input to a two-stream EfficientNet to extract their respective features. Finally, the features are concatenated, and a bi-directional LSTM is utilized to retrieve temporal features and recognize the activity. The experiments prove that our system achieves a good performance with the F-1 score exceeding 0.90 for all activities and reaching 0.963 on average.
안전모 착용 여부를 확인하는 객체 탐지 모델을 물류 현장에서 활용하기 위해서는 안전모를 착용한 경우와 착용하지 않은 경우를 정확하게 탐지해야 한다. 하지만 학습 데이터가 안전모를 착용한 클래스와 착용하지 않은 클래스 간 불균형이 존재하는 경우 해당 데이터만으로는 태스크에 맞게 학습이됐다고 보긴 힘들다. 본 연구는 데이터 증강 기법 적용 시 임의의 데이터에 증강을 적용하는 대신 상대적으로 적은 안전모를 착용하지 않은 클래스를 포함하는 이미지에 대하여 데이터 증강 기법을 적용하였다. 여러 데이터 증강 기법 중 Rotation, Gaussian Noise, 객체를 기준으로 한 Crop을 직접 구현 및 적용하여 객체 탐지 모델인 YOLOv5의 성능을 효과적으로 높이며 더욱 강건한 모델을 개발하는 방법을 제안한다.
Joonho Jeong;Sohyun Kim;Junwoo Park;Jungmin Lee;Kwangbok Jeong;Jaewook Lee
International conference on construction engineering and project management
/
2024.07a
/
pp.658-664
/
2024
The importance of 3D city models for sustainable urban development and management is underscored, but existing models often overlook indoor spaces and attribute information. This issue can be tackled with BIM models, though the conventional method requires accurate and extensive information, incurring considerable time and cost in data collection and processing. To overcome these limitations, this study proposes a method to automatically generate BIM models that include indoor spaces using street view images. The proposed method uses YOLOv5 to identify façade elements and DBSCAN to normalize façade layouts, facilitating the generation of detailed BIM models with a parametric algorithm. To validate the method, a case study of a building in Korea was conducted. The results showed that indoor spaces similar to the actual building were generated, with an error rate of object quantities between 8.46% and 9.03%. This study is anticipated to contribute to the efficient generation of 3D city models that incorporate indoor spaces.
Recently, many studies have introduced artificial intelligence systems in the surgical process to reduce the incidence and mortality of complications in patients. Bleeding is a major cause of operative mortality and complications. However, there have been few studies conducted on detecting bleeding in surgical videos. To advance the development of deep learning models for detecting intraoperative hemorrhage, three models have been trained and compared; such as, YOLOv5, RetinaNet50, and RetinaNet101. We collected 1,016 bleeding images extracted from five surgical videos. The ground truths were labeled based on agreement from two specialists. To train and evaluate models, we divided the datasets into training data, validation data, and test data. For training, 812 images (80%) were selected from the dataset. Another 102 images (10%) were used for evaluation and the remaining 102 images (10%) were used as the evaluation data. The three main metrics used to evaluate performance are precision, recall, and false positive per image (FPPI). Based on the evaluation metrics, RetinaNet101 achieved the best detection results out of the three models (Precision rate of 0.99±0.01, Recall rate of 0.93±0.02, and FPPI of 0.01±0.01). The information on the bleeding detected in surgical videos can be quickly transmitted to the operating room, improving patient outcomes.
Along with economic growth and industrial development, there is an increasing demand for various electronic components and device production of semiconductor, SMT component, and electrical battery products. However, these products may contain foreign substances coming from manufacturing process such as iron, aluminum, plastic and so on, which could lead to serious problems or malfunctioning of the product, and fire on the electric vehicle. To solve these problems, it is necessary to determine whether there are foreign materials inside the product, and may tests have been done by means of non-destructive testing methodology such as ultrasound ot X-ray. Nevertheless, there are technical challenges and limitation in acquiring X-ray images and determining the presence of foreign materials. In particular Small-sized or low-density foreign materials may not be visible even when X-ray equipment is used, and noise can also make it difficult to detect foreign objects. Moreover, in order to meet the manufacturing speed requirement, the x-ray acquisition time should be reduced, which can result in the very low signal- to-noise ratio(SNR) lowering the foreign material detection accuracy. Therefore, in this paper, we propose a five-step approach to overcome the limitations of low resolution, which make it challenging to detect foreign substances. Firstly, global contrast of X-ray images are increased through histogram stretching methodology. Second, to strengthen the high frequency signal and local contrast, we applied local contrast enhancement technique. Third, to improve the edge clearness, Unsharp masking is applied to enhance edges, making objects more visible. Forth, the super-resolution method of the Residual Dense Block (RDB) is used for noise reduction and image enhancement. Last, the Yolov5 algorithm is employed to train and detect foreign objects after learning. Using the proposed method in this study, experimental results show an improvement of more than 10% in performance metrics such as precision compared to low-density images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.