• Title/Summary/Keyword: YOLOv10

Search Result 268, Processing Time 0.029 seconds

A Development of Application for Realtime Tracking Plogging based on Deep Learning Model (딥러닝 모델을 활용한 실시간 플로깅 트래킹 어플리케이션 개발)

  • In-Hye Yoo;Da-Bin Kim;Jung-Yeon Park;Jung-Been Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.434-435
    • /
    • 2023
  • 사회 환경적 운동의 하나인 플로깅(Plogging)은 조깅을 하며 길거리의 쓰레기를 줍는 행위를 소셜 네트워크 서비스(SNS) 등에 기록하는 사회 환경적 운동의 일환이다. 그러나, 활동 지역이나 쓰레기의 종류 및 양 등을 직접 입력해야 하는 불편함으로 인해 이러한 활동의 확대를 저해할 수도 있다. 본 연구는 이러한 활동 기록를 자동으로 트래킹하고 기록할 수 있는 딥러닝 기반의 플로깅 트래핑어플리케이션을 개발하였다. CNN과 YOLOv5를 사용하여 학습된 이미지 인식 모델은 높은 성능으로 쓰레기의 종류와 양을 인식하였다. 이를 통해 사용자는 더욱 편리하게 플로깅 활동을 기록할 수 있었으며, 수거한 쓰레기의 양이나 활동 거리를 활용한 리워딩 시스템으로 사용자 간의 건전한 경쟁을 유도하는데 활용할 수 있다.

Anomaly Sewing Pattern Detection for AIoT System using Deep Learning and Decision Tree

  • Nguyen Quoc Toan;Seongwon Cho
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.85-94
    • /
    • 2024
  • Artificial Intelligence of Things (AIoT), which combines AI and the Internet of Things (IoT), has recently gained popularity. Deep neural networks (DNNs) have achieved great success in many applications. Deploying complex AI models on embedded boards, nevertheless, may be challenging due to computational limitations or intelligent model complexity. This paper focuses on an AIoT-based system for smart sewing automation using edge devices. Our technique included developing a detection model and a decision tree for a sufficient testing scenario. YOLOv5 set the stage for our defective sewing stitches detection model, to detect anomalies and classify the sewing patterns. According to the experimental testing, the proposed approach achieved a perfect score with accuracy and F1score of 1.0, False Positive Rate (FPR), False Negative Rate (FNR) of 0, and a speed of 0.07 seconds with file size 2.43MB.

Real-time 3D Object Perception Algorithm Implementation for Autonomous Driving Robots at Construction Sites (건설 현장을 위한 자율주행 로봇의 실시간 3D 객체 인지 알고리즘 구현)

  • Ji-Ye Choi;In-Gu Choi;Hyeong-Keun Hong;Jae-Wook Jeon
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.11-12
    • /
    • 2024
  • 건설 현장에서 자율주행 로봇의 안전한 주행을 위해 동적 장애물의 정확한 인식 및 추적이 중요하다. 본 논문에서는 실시간 3D 객체 인식 및 추적을 위한 방법을 제안한다. Complex-YOLOv4 모델을 이용한 객체 인식, SORT 알고리즘 확장을 통한 객체 추적을 구현하였다. Jetson AGX Orin 보드의 ROS2 환경에서 시스템을 구축하여, 실시간 3D 객체 인식 및 추적이 가능함을 확인하였다.

A method based on embedding to detect core regions in unstructured document (임베딩 기반의 비정형 문서 핵심 영역 식별)

  • Min Ji Park;Yeong Jun Hwang;Byung Hoon Park;Sooyeon Shin;Chi hoon Lee
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.607-610
    • /
    • 2024
  • 기업의 운영에 있어서 기업의 핵심 정보가 유출되지 않도록 관리하는 것은 매우 중요하다. 따라서, 사내에서 유통되는 문서들에 대해 핵심적인 정보가 사외로 유출되지 않도록 관리하고 추적하는 것은 필수적이다. 특히, 데이터가 구조화되지 않고, 다양한 형식으로 구성되어있는 비정형 문서 내에서 핵심 정보를 식별하는 것은 기술적으로 어려움이 존재한다. 본 논문에서는 YOLOv8을 사용하여 비정형 문서 내에서 영역을 식별하고, 자연어 처리 모델인 Word2Vec을 사용하여 비정형 문서 내에서 핵심 내용을 식별한 후 이를 시각화함으로써 사내에서 유통되는 비정형 문서 내의 핵심 정보를 식별하고 추적하는 방법을 제안하였다.

Application of Deep Learning Method for Real-Time Traffic Analysis using UAV (UAV를 활용한 실시간 교통량 분석을 위한 딥러닝 기법의 적용)

  • Park, Honglyun;Byun, Sunghoon;Lee, Hansung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.353-361
    • /
    • 2020
  • Due to the rapid urbanization, various traffic problems such as traffic jams during commute and regular traffic jams are occurring. In order to solve these traffic problems, it is necessary to quickly and accurately estimate and analyze traffic volume. ITS (Intelligent Transportation System) is a system that performs optimal traffic management by utilizing the latest ICT (Information and Communications Technology) technologies, and research has been conducted to analyze fast and accurate traffic volume through various techniques. In this study, we proposed a deep learning-based vehicle detection method using UAV (Unmanned Aerial Vehicle) video for real-time traffic analysis with high accuracy. The UAV was used to photograph orthogonal videos necessary for training and verification at intersections where various vehicles pass and trained vehicles by classifying them into sedan, truck, and bus. The experiment on UAV dataset was carried out using YOLOv3 (You Only Look Once V3), a deep learning-based object detection technique, and the experiments achieved the overall object detection rate of 90.21%, precision of 95.10% and the recall of 85.79%.

A Technique for Interpreting and Adjusting Depth Information of each Plane by Applying an Object Detection Algorithm to Multi-plane Light-field Image Converted from Hologram Image (Light-field 이미지로 변환된 다중 평면 홀로그램 영상에 대해 객체 검출 알고리즘을 적용한 평면별 객체의 깊이 정보 해석 및 조절 기법)

  • Young-Gyu Bae;Dong-Ha Shin;Seung-Yeol Lee
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.31-41
    • /
    • 2023
  • Directly converting the focal depth and image size of computer-generated-hologram (CGH), which is obtained by calculating the interference pattern of light from the 3D image, is known to be quite difficult because of the less similarity between the CGH and the original image. This paper proposes a method for separately converting the each of focal length of the given CGH, which is composed of multi-depth images. Firstly, the proposed technique converts the 3D image reproduced from the CGH into a Light-Field (LF) image composed of a set of 2D images observed from various angles, and the positions of the moving objects for each observed views are checked using an object detection algorithm YOLOv5 (You-Only-Look-Once-version-5). After that, by adjusting the positions of objects, the depth-transformed LF image and CGH are generated. Numerical simulations and experimental results show that the proposed technique can change the focal length within a range of about 3 cm without significant loss of the image quality when applied to the image which have original depth of 10 cm, with a spatial light modulator which has a pixel size of 3.6 ㎛ and a resolution of 3840⨯2160.

Cascade Network Based Bolt Inspection In High-Speed Train

  • Gu, Xiaodong;Ding, Ji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3608-3626
    • /
    • 2021
  • The detection of bolts is an important task in high-speed train inspection systems, and it is frequently performed to ensure the safety of trains. The difficulty of the vision-based bolt inspection system lies in small sample defect detection, which makes the end-to-end network ineffective. In this paper, the problem is resolved in two stages, which includes the detection network and cascaded classification networks. For small bolt detection, all bolts including defective bolts and normal bolts are put together for conducting annotation training, a new loss function and a new boundingbox selection based on the smallest axis-aligned convex set are proposed. These allow YOLOv3 network to obtain the accurate position and bounding box of the various bolts. The average precision has been greatly improved on PASCAL VOC, MS COCO and actual data set. After that, the Siamese network is employed for estimating the status of the bolts. Using the convolutional Siamese network, we are able to get strong results on few-shot classification. Extensive experiments and comparisons on actual data set show that the system outperforms state-of-the-art algorithms in bolt inspection.

Location Tracking and Visualization of Dynamic Objects using CCTV Images (CCTV 영상을 활용한 동적 객체의 위치 추적 및 시각화 방안)

  • Park, Sang-Jin;Cho, Kuk;Im, Junhyuck;Kim, Minchan
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.53-65
    • /
    • 2021
  • C-ITS(Cooperative Intelligent Transport System) that pursues traffic safety and convenience uses various sensors to generate traffic information. Therefore, it is necessary to improve the sensor-related technology to increase the efficiency and reliability of the traffic information. Recently, the role of CCTV in collecting video information has become more important due to advances in AI(Artificial Intelligence) technology. In this study, we propose to identify and track dynamic objects(vehicles, people, etc.) in CCTV images, and to analyze and provide information about them in various environments. To this end, we conducted identification and tracking of dynamic objects using the Yolov4 and Deepsort algorithms, establishment of real-time multi-user support servers based on Kafka, defining transformation matrices between images and spatial coordinate systems, and map-based dynamic object visualization. In addition, a positional consistency evaluation was performed to confirm its usefulness. Through the proposed scheme, we confirmed that CCTVs can serve as important sensors to provide relevant information by analyzing road conditions in real time in terms of road infrastructure beyond a simple monitoring role.

Deep Learning Based Pine Nut Detection in UAV Aerial Video (UAV 항공 영상에서의 딥러닝 기반 잣송이 검출)

  • Kim, Gyu-Min;Park, Sung-Jun;Hwang, Seung-Jun;Kim, Hee Yeong;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2021
  • Pine nuts are Korea's representative nut forest products and profitable crops. However, pine nuts are harvested by climbing the trees themselves, thus the risk is high. In order to solve this problem, it is necessary to harvest pine nuts using a robot or an unmanned aerial vehicle(UAV). In this paper, we propose a deep learning based detection method for harvesting pine nut in UAV aerial images. For this, a video was recorded in a real pine forest using UAV, and a data augmentation technique was used to supplement a small number of data. As the data for 3D detection, Unity3D was used to model the virtual pine nut and the virtual environment, and the labeling was acquired using the 3D transformation method of the coordinate system. Deep learning algorithms for detection of pine nuts distribution area and 2D and 3D detection of pine nuts objects were used DeepLabV3+, YOLOv4, and CenterNet, respectively. As a result of the experiment, the detection rate of pine nuts distribution area was 82.15%, the 2D detection rate was 86.93%, and the 3D detection rate was 59.45%.

Development of an abnormal road object recognition model based on deep learning (딥러닝 기반 불량노면 객체 인식 모델 개발)

  • Choi, Mi-Hyeong;Woo, Je-Seung;Hong, Sun-Gi;Park, Jun-Mo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.149-155
    • /
    • 2021
  • In this study, we intend to develop a defective road surface object recognition model that automatically detects road surface defects that restrict the movement of the transportation handicapped using electric mobile devices with deep learning. For this purpose, road surface information was collected from the pedestrian and running routes where the electric mobility aid device is expected to move in five areas within the city of Busan. For data, images were collected by dividing the road surface and surroundings into objects constituting the surroundings. A series of recognition items such as the detection of breakage levels of sidewalk blocks were defined by classifying according to the degree of impeding the movement of the transportation handicapped in traffic from the collected data. A road surface object recognition deep learning model was implemented. In the final stage of the study, the performance verification process of a deep learning model that automatically detects defective road surface objects through model learning and validation after processing, refining, and annotation of image data separated and collected in units of objects through actual driving. proceeded.