본 연구에서는 모형 자동차를 이용한 YOLO 운전 보조 시스템을 구현 하였다. YOLO는 최근에 잇슈가 되고 있는 딥 러닝을 사용하는 물체 감지 및 인식 알고리즘입니다. 이 시스템은 카메라를 통해 획득한 영상에 영상처리 기술을 적용하여 차선 이탈을 경고하고, YOLO를 이용하여 객체를 인식하며 객체 유형 및 차량 사이의 거리에 따라 다양한 기능을 수행한다. 기존 물체 검출 및 인식 알고리즘 보다 우수한 YOLO는 추가 장비 없이 주행 보조 시스템 성능을 향상시킨다. YOLO를 이용한 주행 보조 시스템은 적은 비용으로 운전자의 안전성을 확보할 수 있을 것이다.
전 세계적으로 유행하는 COVID-19(코로나19)로 인해 사람들은 대면 접촉을 피하게 되었고, 전염성이 높은 이유로 마스크의 착용이 의무화되고 있고, 이를 검사하는 업무가 증가하고 있다. 그래서, 인공지능 기술을 통해 업무를 도와줄 수 있는 출입자 통계와 출입자 마스크 착용 검사를 할 수 있는 시스템이 필요하다. 이를 위해 본 논문에서는 딥러닝 알고리즘을 활용한 출입자 통계와 마스크 착용 판별 시스템을 제시한다. 또한, 실시간 영상인식에 많이 활용되고 있는 YOLO-v3와 YOLO-v4, YOLO-Tiny 알고리즘을 데스크탑 PC와 Nvidia사의 Jetson Nano에 적용하여 알고리즘별 성능 비교를 통해 적합한 방법을 찾고 적용하였다.
본 연구에서는 대전광역시 주요 간선도로인 유성대로를 대상으로 드론을 통해 취득한 노면 영상데이터를 기반으로 물체탐지알고리즘(Object Detection algorithm) 가운데 Tiny-YOLO-V2와 Faster-RCNN을 활용하여 아스팔트 도로노면의 균열을 인식, 균열유형을 구분하고 실험 결과차이를 비교하였다. 분석결과, Faster-RCNN의 mAP는 71%이고 Tiny-YOLO-V2의 mAP는 33%로 측정되었으며, 이는 1stage Detection인 YOLO계열 알고리즘보다 2Stage Detection인 Faster-RCNN 계열의 알고리즘이 도로노면의 균열을 확인하고 분리하는데 더 좋은 성능을 보인다는 것을 확인하였다. 향후, 드론과 인공지능형 균열검지시스템을 이용한 도로자산관리체계(Infrastructure Asset Management) 구축방안 마련을 통해 효율적이고 경제적인 도로 유지관리 의사결정 지원 시스템 구축 및 운영 환경을 조성할 수 있을 것이라 판단된다.
K-UAM은 2035년까지의 성숙기 이후 상용화될 예정이다. UAM 회랑은 기존의 헬리콥터 회랑을 수직 분리하여 사용될 예정이기에 회량 사용량이 증가할 것으로 예상된다. 따라서 회랑을 모니터링하는 시스템도 필요하다. 최근 객체 검출 알고리즘이 크게 발전하였다. 객체 검출 알고리즘은 1단계 탐지와, 2단계 탐지 모델로 나뉜다. 실시간 객체 검출에 있어서 2단계 모델은 너무 느리기에 적합하지 않다. 기존 1단계 모델은 정확도에 문제가 있었지만, 버전 업그레이드를 통해 성능이 향상되었다. 1단계 모델 중 YOLO-V5는 모자이크 기법을 통한 소형 객체 검출 성능을 향상시킨 모델이다. 따라서 YOLO-V5는 넓은 회랑의 실시간 모니터링에 가장 적합하다고 판단된다. 본 논문에서는 YOLO-V5 알고리즘을 학습시켜 궁극적으로 회랑 모니터링 시스템에 대한 적합도를 분석한다.
본 논문에서는 실시간으로 web-cam을 이용해, 후숙과일의 불량 여부를 판단, 분류하고 불량이 없는 후숙과일의 이미지 분석을 통하여 숙성도 예측하는 시스템을 소개한다. 실시간 다중 객체인식에 탁월한 yolo모델을 활용해, 과일의 불량여부 판단 후 분류하고, 이미지를 획득한 뒤, k-mean clustering 알고리즘을 이용해, 이미지를 segmentation 한다. segmentation된 이미지에 grabcut 알고리즘의 foreground-extraction을 사용해 배경 제거를 한 뒤, cluster의 중심색상값 색상값의 면적%, 전체 면적을 이용해 현재 숙성도를 계산하고 이를 이용해 과일의 후숙 시간 데이터와 비교, 숙성이 완료될 시간을 예측한다. 기존 수작업으로 이루어지고 있는 과일의 분류작업의 인력 감소 및 정확성을 높일 수 있는 알고리즘을 제안한다.
원격탐사 자료 기반 비닐하우스 탐지 기술 개발은 불법 농경 시설물의 현황 파악과 비닐하우스에서 재배되는 농작물 수량 예측을 위해 중요하다. 본 연구에서는 딥러닝 알고리즘을 활용하여 김제시 지역을 촬영한 Planetscope 위성영상들로부터 비닐하우스를 탐지하기 위한 방법을 제안하였다. 우선, 5장의 Planetscope 위성영상을 기반으로 비닐하우스 객체를 포함한 훈련 영상들을 제작하였다. 그리고, 훈련 영상들을 이용하여 YOLO(You Only Look Once) 모델을 학습시킨다. 학습시킨 YOLO 모델을 테스트 Planetscope 위성영상에 적용하여 비닐하우스 객체들을 탐지한다. 본 연구에서 제안한 방법을 적용한 결과, 주어진 Planetscope 위성영상으로부터 총 76.4%의 비닐하우스가 탐지되었다. 추후 연구에서는 공간해상도 1m 이하의 고해상도 위성영상에서 더 많은 비닐하우스 객체를 탐지하기 위한 기술을 개발할 계획이다.
점자를 제외한 시각 장애우들이 유통기한을 확인할 수 있는 효과적인 방법이 거의 개발되어 있지 않으며, 이로 인하여 시각 장애우들의 식품 안전성이 위협받고 있다. 본 연구에서는 시각 장애우의 식품 안전성 확보를 위해 실시간 객체 인식 알고리즘(you only look once, YOLO) 및 광학 문자 인식 (optical character recognition, OCR)에 기반한 유통기한 알림 시스템을 개발했다. 제안하는 시스템은 총 4가지 단계로 시각 장애우에게 유통기한 정보를 전달한다: (1) 표적 제품의 바코드 스캔을 통한 제품 확인 (2) 실시간으로 입력되는 제품 영상에서 YOLO 알고리즘을 활용하여 유통기한이 표기된 이미지 영역 검출; (3) 검출된 이미지 영역에서 OCR 알고리즘을 활용하여 유통기한 문자 인식; (4) Text to Speech (TTS) 기술을 활용하여 유통기한 정보를 사용자에게 전달. 성능 평가를 위한 온라인 실험 결과, 앞이 보이지 않는 피험자가 개발한 시스템을 사용해서 제품의 유통기한을 평균 86%의 높은 정확도로 확인할 수 있음이 검증되었다. 이러한 결과는 제안하는 시스템이 저시력자를 포함한 시각 장애우들의 식품 안전성 확보에 이바지할 수 있음을 보여준다.
본 논문에서는 제조 공장 내 AGV (Automated Guided Vehicle) 주행 중 객체 인식을 위한 YOLO v3 알고리즘의 정확도에 대해 살펴보았다. 실험을 위해 2D LiDAR 및 스테레오 카메라가 장착된 AGV를 준비하였다. AGV 주행 중 2D LiDAR를 활용한 SLAM 기법으로 지도 정보를 획득하였고 스테레오 카메라를 활용한 객체 인식이 이루어졌다. 그리고 YOLO v3 알고리즘 기반의 학습 정도에 따른 재현율, AP, mAP 등을 측정하였다. 실험 결과, 4000장의 train data 와 500장의 test data 로 훈련된 YOLO v3 알고리즘에 AGV에 장착된 스테레오 카메라의 시점과 높이에서 획득한 1200장의 이미지를 추가로 학습할 경우 mAP가 약 10% 향상되었다. 정밀도(precision) 와 재현율 역시 각각 6.8%와 16.4% 향상되었다.
본 논문에서는 시각 장애우의 식품 안전성 증진을 위해 광학 문자 인식 (optical character recognition, OCR) 및 실시간 객체 인식 (you only look once, YOLO) 알고리즘에 기반한 식품의 유통기한 자동 알림 시스템을 제안한다. 제안하는 시스템은 1) 스마트폰 카메라를 통해 실시간으로 입력되는 영상에서 YOLO 알고리즘을 활용하여 유통기한으로 예측되는 이미지 영역을 검출하고, 2) 검출된 영역에서 OCR 알고리즘을 활용하여 유통기한 데이터를 추출하며, 3) 최종 추출된 유통기한 데이터를 음성으로 변환하여 시각 장애우에게 전달한다. 개발된 시스템은 유통기한 정보를 추출해서 사용자에게 전달하기까지 평균 약 7초 이내의 빠른 응답 속도를 보였으며, 62.8%의 객체 인식 정확도와 93.6%의 문자 인식 정확도를 보였다. 이러한 결과들은 제안하는 시스템을 시각 장애우들이 실용적으로 활용할 수 있다는 가능성을 보여준다.
본 논문에서는 YOLO (You Only Look Once) 라이브러리를 이용하여 사용자의 손가락 방향을 감지하는 알고리즘을 제안하였다. 제안한 손가락 방향감지 알고리즘의 처리단계는 학습 데이터 관리단계, 데이터 학습 단계, 그리고 손가락 방향감지 단계로 구성된다. 실험 결과, 카메라와 손가락간의 거리는 손가락 방향 감지 정확도에 매우 큰 영향을 미침을 알 수 있었다. 차후 제안 알고리즘의 정확도 및 신뢰도의 개선 후에 이 기능을 커틀봇3 (Turtlebot3)에 적용 할 예정이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.