Acknowledgement
본 연구는 과학기술정보통신부 및 정보통신기획평가원의 SW중심대학지원사업의 연구결과로 수행되었음(2019-0-01817)
본 논문에서는 실시간으로 web-cam을 이용해, 후숙과일의 불량 여부를 판단, 분류하고 불량이 없는 후숙과일의 이미지 분석을 통하여 숙성도 예측하는 시스템을 소개한다. 실시간 다중 객체인식에 탁월한 yolo모델을 활용해, 과일의 불량여부 판단 후 분류하고, 이미지를 획득한 뒤, k-mean clustering 알고리즘을 이용해, 이미지를 segmentation 한다. segmentation된 이미지에 grabcut 알고리즘의 foreground-extraction을 사용해 배경 제거를 한 뒤, cluster의 중심색상값 색상값의 면적%, 전체 면적을 이용해 현재 숙성도를 계산하고 이를 이용해 과일의 후숙 시간 데이터와 비교, 숙성이 완료될 시간을 예측한다. 기존 수작업으로 이루어지고 있는 과일의 분류작업의 인력 감소 및 정확성을 높일 수 있는 알고리즘을 제안한다.
본 연구는 과학기술정보통신부 및 정보통신기획평가원의 SW중심대학지원사업의 연구결과로 수행되었음(2019-0-01817)