• Title/Summary/Keyword: Y-parallax

Search Result 213, Processing Time 0.028 seconds

The Application of ParalluxTM System for Multi-Detection of (Fluoro)quinolone Class Antibiotics Residues in Raw Bovine Milk

  • Park, Hong-Je;Kim, Gyung-Dong;Han, Kyu-Ho;Lee, Chi-Ho
    • Food Science of Animal Resources
    • /
    • v.33 no.2
    • /
    • pp.198-204
    • /
    • 2013
  • This study aimed to apply the Parallux system to detect (fluoro)quinone antibiotics residues in raw bovine milk. The immunogen enabled the generation of a specific antiserum with a titer of 1/40,000. The $Parallax^{TM}$ kit using the antibody displayed $IC_{50}$ value of 10 to 150 ppb for (fluoro)quinolone antibiotics. $Parallax^{TM}$ kit was also sensitive for the detection of incurred (fluoro)quinolone at Korean Maximum Residual Levels in raw bovine milk as the result of dose response test. Cross reactivities of the antibody with the common (fluoro)quinolones were determined to be norfloxacin, 100%; enrofloxacin, 100%; ciprofloxacin, 100%; danofloxacin, 100%; nalidixic acid, 40%. Lower detection limit (LOD) values of the $Parallax^{TM}$ kit in raw bovine milk were determined to be norfloxacin, 4 ppb; enrofloxacin, 5 ppb; danofloxacin, 5 ppb; ciprofloxacin, 5 ppb and nalidixic acid, 10 ppb. The $Parallax^{TM}$ kit was run 8 times with five different concentrations of norfloxacin to determine the coefficient of variation (CV, %) of intra-assay, which was between 2.7% and 11.8%. To confirm the precision among kit batches for the inter-assay, five different batch kits were tested with 2 different concentration of norfloxacin. The CVs of the inter assay were 4.2% at 50 ppb, and 7.2% at 10 ppb norfloxacin, respectively.

ASTROMETRY OF IRAS 22555+6213 WITH VERA: A 3-DIMENSIONAL VIEW OF SOURCES ALONG THE SAME LINE OF SIGHT

  • CHIBUEZE, JAMES O.;SAKANOUE, HIROFUMI;OMODAKA, TOSHIHIRO;HANDA, TOSHIHIRO;NAGAYAMA, TAKUMI;KAMEZAKI, TATSUYA;BURNS, ROSS
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.119-120
    • /
    • 2015
  • We report results of the measurement of the trigonometric parallax of an $H_2O$ maser source in IRAS 22555+6213 with the VLBI Exploration of Radio Astrometry (VERA). The annual parallax was determined to be $0.278{\pm}0.019$ mas, corresponding to a distance of $3.66^{+0.30}_{-0.26}kpc$. Our results confirm that IRAS 22555+6213 is located in the Perseus arm. We computed the peculiar motion of IRAS 22555+6213 to be ($U_{src}$, $V_{src}$, $W_{src}$) = ($0{\pm}1$, $-32{\pm}1$, $9{\pm}1$) $km\;s^{-1}$, where $U_{src}$, $V_{src}$, and $W_{src}$ are directed toward the Galactic center, in the direction of Galactic rotation and toward the Galactic north pole, respectively. IRAS 22555+6213, NGC7538 and Cepheus A lie along the same line of sight, and are within $2^{\circ}$ on the sky. Their parallax distances, with which we derived their absolute position in the Milky Way, show that IRAS 22555+6213 and NGC7538 are associated with the Perseus arm, while Cepheus A is located in the Local arm. We compared the kinematic distances of IRAS 22555+6213 derived with flat and non-flat rotation curve with its parallax distance and found the kinematic distance derived from the non-flat rotation assumption ($-32km\;s^{-1}$ lag) to be consistent with the parallax distance.

A Study on Direction Finding Accuracy Analysis for Airborne ESM (항공용 전자전장비의 방향탐지 정확도 분석기법)

  • Lee, Young-Joong;Kim, In-Seon;Park, Joo-Rae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.63-73
    • /
    • 2008
  • The helicopter position, heading data and the direction finding data of ESM are essentially required to compensate the parallax and analyze the direction finding accuracy of heliborne ESM in flight test phase. In the case of the long test range compared with small platform like as LYNX helicopter and Jisim Island test site, the parallax compensation for direction finding accuracy calculation and GPS position error can be neglected. In this paper, the direction finding accuracy on the basis of helicopter propeller was calculated by coordinate changing between helicopter and transmitting antenna from WGS84 coordinate to navigation coordinate using helicopter position and direction finding data.

Optical implementation of modified integral imaging method based on horizontal parallax (수평시차 기반의 변형된 집적영상 기법의 광학적 구현)

  • Shin Dong-Hak;Kwon Young-Man;Kim Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.712-717
    • /
    • 2006
  • In this paper, a new integral imaging method with horizontal parallax only is proposed by modified use of elemental images pickuped from conventional integral imaging. The modified elemental images are obtained by magnifying single horizontal elemental image vertically and from which 3D images could be reconstructed. The proposed method can provide us large reduction of transmission information data for elemental images by eliminating the vertical parallax. The feasibility of our approach is experimentally demonstrated and its results are presented.

Time Series Evaluation of Visual Fatigue and Depth Sensation Using a Stereoscopic Display

  • Kim, Sang-Hyun;Kishi, Shinsuke;Kawai, Takashi;Hatada, Toyohiko
    • Journal of Information Display
    • /
    • v.10 no.4
    • /
    • pp.188-194
    • /
    • 2009
  • Conventional stereoscopic (3D) displays using binocular parallax generate unnatural conflicts between convergence and accommodation. These conflicts can affect the observer's ability to fuse binocular images and may cause visual fatigue. In this study, time series changes in visual fatigue and depth sensation when viewing stereoscopic images with changing parallax were examined. In particular, the physiological changes, including the subjective symptoms of visual fatigue, when viewing five parallax conditions, were examined. Then a comparative analysis of the 2D and 3D conditions was performed based on the visual function. To obtain data regarding the visual function, the time series changes in the spontaneous-blinking rate before and during the viewing of 3D images were measured. The time series change results suggest that 2D and 3D images cause significantly different types of visual fatigue over the range of binocular disparity.

A Three-dimensional Transparent Display with Enhanced Transmittance and Resolution Using an Active Parallax Barrier with See-through Areas on an LCD Panel

  • Park, Minyoung;Choi, Hee-Jin
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.95-100
    • /
    • 2017
  • The transmittance of the three dimensional (3D) transparent display is an important factor and can be enhanced by adding a see-through area to the displayed 3D image in order to transmit an ambient light with maximum transparency. However, there is a side effect that the perceived 3D resolution can be degraded due to the see-through area. In this paper, we propose an advanced method to resolve the above trade-off relation between the transparency and the 3D resolution by using an active parallax barrier (PB) with a see-through area. The experimental results are also presented to prove the proposed principle.

Horizontal-parallax-only Optical Scanning Holography with an Electronic Low-pass Filter

  • Kim, Taegeun;Jang, Sun Ho;Kim, You Seok
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • We propose a novel technique that records the horizontal-parallax-only (HPO) hologram of a real object using optical scanning holography (OSH). The proposing HPO-OSH is composed of a conventional OSH and an electronics low pass filter. When we scan an object along vertical direction before horizontal direction, the electronic low pass filter filters the vertical fringes with preserving horizontal fringes and gives an HPO hologram. To the best of our knowledge, this is the first time to record the HPO hologram using OSH without either truncation of the scanning beam or digital post processing.

Time-series changes in visual fatigue and depth sensation while viewing stereoscopic images

  • Kim, Sang-Hyun;Kishi, Shinsuke;Kawai, Takashi;Hatada, Toyohiko
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1099-1102
    • /
    • 2009
  • Conventional stereoscopic (3D) displays using binocular parallax generate unnatural conflicts between convergence and accommodation. Those conflicts can affect the ability to fuse binocular images and may cause visual fatigue. This study examined time-series changes in visual fatigue and depth sensation while viewing stereoscopic images with changing parallax. We examined the physiological changes, including the subjective symptoms of visual fatigue, when viewing five parallax conditions. The time-series results suggest that 2D and 3D images produce significantly different types of visual fatigue over the range of binocular disparity.

  • PDF

Implementation of Sonar Bearing Accuracy Measurement Equipment with Parallax Error and Time Delay Error Correction (관측위치오차와 시간지연오차를 보정하는 소나방위정확도 측정 장비 구현)

  • Kim, Sung-Duk;Kim, Do-Young;Park, Gyu-Tae;Shin, Kee-Cheol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.245-251
    • /
    • 2019
  • Sonar bearing accuracy is the correspondence between the target orientation predicted by sonar and actual target orientation, and is obtained from measurements. However, when measuring sonar bearing accuracy, many errors are included in the results because they are made at sea, where complex and diverse environmental factors are applied. In particular, parallax error caused by the difference between the position of the GPS receiver and the sonar sensor, and the time delay error generated between the speed of underwater sound waves and the speed of electromagnetic waves in the air have a great influence on the accuracy. Correcting these parallax errors and time delay errors without an automated tool is a laborious task. Therefore, in this study, we propose a sonar bearing accuracy measurement equipment with parallax error and time delay error correction. The tests were carried out through simulation data and real data. As a result of the test it was confirmed that the parallax error and time delay error were systematically corrected so that 51.7% for simulation data and more than 18.5% for real data. The proposed method is expected to improve the efficiency and accuracy of sonar system detection performance verification in the future.

3D Display in Mobile Applications

  • Nam, Hui;Kim, Beom-Shik;Park, Chan-Young;Gu, Ja-Seng;Chung, Ho-Kyoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1561-1564
    • /
    • 2006
  • SDI has been developing mobile 3D display for years. For mobile applications, we adapted parallax barrier method. We have developed auto stereoscopic swing 3D display in which people can 3D image in both portrait and landscape mode. Furthermore to increase 3D resolution, we have developed a high resolution 3D display using time division multiplexing parallax barrier method

  • PDF