Implementation of Sonar Bearing Accuracy Measurement Equipment with Parallax Error and Time Delay Error Correction

관측위치오차와 시간지연오차를 보정하는 소나방위정확도 측정 장비 구현

  • Received : 2019.09.18
  • Accepted : 2019.09.30
  • Published : 2019.12.31

Abstract

Sonar bearing accuracy is the correspondence between the target orientation predicted by sonar and actual target orientation, and is obtained from measurements. However, when measuring sonar bearing accuracy, many errors are included in the results because they are made at sea, where complex and diverse environmental factors are applied. In particular, parallax error caused by the difference between the position of the GPS receiver and the sonar sensor, and the time delay error generated between the speed of underwater sound waves and the speed of electromagnetic waves in the air have a great influence on the accuracy. Correcting these parallax errors and time delay errors without an automated tool is a laborious task. Therefore, in this study, we propose a sonar bearing accuracy measurement equipment with parallax error and time delay error correction. The tests were carried out through simulation data and real data. As a result of the test it was confirmed that the parallax error and time delay error were systematically corrected so that 51.7% for simulation data and more than 18.5% for real data. The proposed method is expected to improve the efficiency and accuracy of sonar system detection performance verification in the future.

소나방위정확도는 소나에서 예측한 표적방위와 실 표적방위와의 일치성을 나타내며 측정을 통해 구해진다. 하지만 소나방위정확도 측정 시에는 복잡하고 다양한 환경 요인이 작용하는 해상에서 이루어지는 관계로 여러 오차가 결과에 포함된다. 특히 GPS 수신장치와 소나센서 위치 차이로 발생하는 관측위치오차와 수중 음파 속도와 공기 중 전자파 속도 사이에서 발생되는 시간지연오차는 정확도에 큰 영향을 미치는 요소이다. 이런 관측위치오차와 시간지연오차를 자동화도구 없이 보정하는 것은 많은 노력이 들어가는 작업이다. 이에 본 연구에서는 관측위치오차와 시간지연오차를 보정하는 소나방위정확도 측정 장비를 제안하였다. 실험은 모의데이터와 실 해상데이터를 통해 이루어졌으며, 실험 결과 관측위치오차와 시간지연오차가 시스템적으로 보정되어 모의데이터인 경우 51.7%, 실 해상데이터인 경우 18.5% 이상 보정됨을 확인하였다. 제안한 방법을 통해 향후 소나시스템 탐지성능 검증의 효율성 및 정확성 향상을 기대한다.

Keywords

References

  1. O.W. Cheon. (1993, Oct.). Sonar signal processing technology. The Magazine of the IEEE. 20(10), pp. 1116-1127.
  2. C.C. Counselman III, Richard I, Abbot, Sergai A. Gourevitch, Robert W. King, Albert R. Paradis. CENTIMETER-LEVEL RELATIVE POSITIONING WITH GPS. JOURNAL OF SURVEYING ENGINEERING. 109(2), pp. 81-89. https://doi.org/10.1061/(ASCE)0733-9453(1983)109:2(81)
  3. K.C.Shin, B.M.Yoon, S.I.Cho, W.T.Oh,"Improvement of Target Bearing Accuracy of Cylindrical Array Sonar during Sudden Turning of Submarine,"Korea Institute of Military Science and Technology(KIMST) Conference, ICC JEJU, 2017, pp. 229-230.
  4. J.S Park, S.H Cho, D.H Kang, "Study on Bearing & Distance Error for Detection of Underwater Targets,"Korean Society for Noise and Vibration Engineering(KSNVE) Conference, 2017, pp. 256-256.
  5. A.D.Waite, Sonar for Practicing Engineers 3th ed. JOHN WILEY & SONS,LTD, 2002.
  6. NMEA 0183. In: Wikipedia. [Citation Date 1 Apr 2019], https://en.m.wikipedia.org/wiki/NMEA 0183
  7. Errors and residuals. In: Wikipedia. [Citation Date 2 Apr 2019], https://en.m.wikipedia.org/wiki/Erros_and_residuals
  8. H.S.Hwang, K.T.Park, K.C.Shin, S.I.Cho, A Study on Performance of Symbol Error Rate for Frequency Domain Equalization. Journal of Korea Institute of Signal Processing and Systems. 18(2), pp. 37-42.