DOI QR코드

DOI QR Code

A Three-dimensional Transparent Display with Enhanced Transmittance and Resolution Using an Active Parallax Barrier with See-through Areas on an LCD Panel

  • Received : 2017.03.09
  • Accepted : 2017.04.10
  • Published : 2017.04.25

Abstract

The transmittance of the three dimensional (3D) transparent display is an important factor and can be enhanced by adding a see-through area to the displayed 3D image in order to transmit an ambient light with maximum transparency. However, there is a side effect that the perceived 3D resolution can be degraded due to the see-through area. In this paper, we propose an advanced method to resolve the above trade-off relation between the transparency and the 3D resolution by using an active parallax barrier (PB) with a see-through area. The experimental results are also presented to prove the proposed principle.

Keywords

References

  1. S.-H. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M. S. Oh, and S. Im, "Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel," Adv. Mater. 21, 678-682 (2009). https://doi.org/10.1002/adma.200801470
  2. S.-H. Park, C.-S. Hwang, J.-I. Lee, S. Chung, Y. Yang, L. M. Do, and H. Chu "Transparent ZnO thin film transistor array for the application of transparent AM-OLED display," in SID International Symposium Digest of Technical Papers, Society for Information Display 37, 25-28 (2006).
  3. J. Chung, J. Lee, J. Choi, C. Park, J. Ha, H. Chung, and S. Kim, "Transparent AMOLED display based on bottom emission structure," in SID International Symposium Digest of Technical Papers, Society for Information Display 41, 148-151 (2010).
  4. C.-H. Lin, W.-B. Lo, K.-H. Liu, C.-Y. Liu, J.-K. Lu, and N. Sugiura, "Late-news poster: Novel transparent LCD with tunable transparency," in SID International Symposium Digest of Technical Papers, Society for Information Display 43, 1159-1162 (2012).
  5. S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, "Additive light field displays: Realization of augmented reality with holographic optical elements", ACM Trans. Graph. (SIG GRAPH) 35, 1-13 (2016).
  6. C.-K. Lee, S. Moon, S. Lee, D. Yoo, J.-Y. Hong, and B. Lee, "Compact three-dimensional head-mounted display system with Savart plate", Opt. Express 24, 19531-19544 (2016) https://doi.org/10.1364/OE.24.019531
  7. Y. Takaki and Y. Yamaguchi, "Flat-panel see-through threedimensional display based on integral imaging," Opt. Lett. 40, 1873-1876 (2015). https://doi.org/10.1364/OL.40.001873
  8. Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, "Super multi-view windshield display for longdistance image information presentation," Opt. Express 19, 704-716 (2011). https://doi.org/10.1364/OE.19.000704
  9. K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, "Fullcolor lens-array holographic optical element for threedimensional optical see-through augmented reality", Opt. Lett. 39, 127-130 (2014). https://doi.org/10.1364/OL.39.000127
  10. J. Yeom, J. Jeong, C. Jang, G. Li, K. Hong, and B. Lee, "Three-dimensional/two-dimensional convertible projection screen using see-through integral imaging based on holographic optical element," Appl. Opt. 54, 8856-8862 (2015). https://doi.org/10.1364/AO.54.008856
  11. H. Hua and B. Javidi, "A 3D integral imaging optical see-through head mounted display," Opt. Express 22, 13484-13491 (2014). https://doi.org/10.1364/OE.22.013484
  12. J. Hong, S.-W. Min, and B. Lee, "Integral floating display systems for augmented reality", Appl. Opt. 51, 4201-4209 (2012). https://doi.org/10.1364/AO.51.004201
  13. B. Lee, "Three-dimensional displays, past and present," Phys. Today 66, 36-41 (2013).
  14. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-M. Min, N. Chen, and B. Lee, "Three-dimensional display technologies of recent interest: principles, status, and issues," Appl. Opt. 50, H87-H115 (2011). https://doi.org/10.1364/AO.50.000H87
  15. S.-U. Kim, J. Kim, J-H. Suh, J.-H. Na, and S.-D. Lee, "Concept of active parallax barrier on polarizing interlayer for near-viewing autostereoscopic displays," Opt. Express 24, 25010-25018 (2016). https://doi.org/10.1364/OE.24.025010
  16. S.-M. Wi and S.-H. Lee, "Autostereoscopic Display System Using a Variable Parallax Barrier," Korean J. Opt. Photon. 19, 95-102 (2008). https://doi.org/10.3807/HKH.2008.19.2.095
  17. H. Kwon and H.-J. Choi, "A time-sequential multi-view autostereoscopic display without resolution loss using a multi-directional backlight unit and an LCD panel," Proc. SPIE 8288, 1-6 (2012).
  18. Y. Oh, D. Shin, B.-G. Lee, S.-I. Jeong, and H.-J. Choi, "Resolution-enhanced integral imaging in focal mode with a time-multiplexed electrical mask array," Opt. Express 22, 17620-17629 (2014). https://doi.org/10.1364/OE.22.017620
  19. H. J. Lee, H. Nam, J. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, "A high resolution autostereoscopic display employing a time division parallax barrier," in SID International Symposium Digest of Technical Papers, Society for Information Display 37, 81-84 (2006).
  20. H.-J. Choi and M. Park, "A time-sequential autostereoscopic 3D display using a vertical line dithering for utilizing the side lobes," Proc. SPIE 9271, 92710T (2014).
  21. M. Park, J. Kim, and H.-J. Choi, "Effect of interlacing methods of stereoscopic displays on perceived image quality," Appl. Opt. 53, 520-527 (2014). https://doi.org/10.1364/AO.53.000520

Cited by

  1. Polymer waveguide WDM channel selector operating over the entire C and L bands vol.26, pp.13, 2018, https://doi.org/10.1364/OE.26.016323