• Title/Summary/Keyword: Y doped ZnO

Search Result 866, Processing Time 0.024 seconds

Growth and structural properties of ZnO co-doped Er :$ LiNbO_3$ thin films by liquid phase epitaxy method (LPE법에 의한 ZnO co-doped Er :$ LiNbO_3$, 박막의 성장 및 구조적 특성)

  • 심장보;전원남;윤석규;윤대호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.1
    • /
    • pp.27-30
    • /
    • 2002
  • ZnO co-doped Er:$LiNbO_3$ single crystal thin films have been grown on $LiNbO_3$ (001) substrate by liquid phase epitaxy (LPE) method. The melts of ZnO co-doped Er:$LiNbO_3$ was fixed $Er_2O_3$, concentration (1 mol%) and different ZnO concentrations 3 and 5 mol%. The crystallinity of ZnO co-doped Er :$LiNbO_3$ films became better than the $LiNbO_3$ substrate. At ZnO 5 mol% concentration, the surface of ZnO co-doped Er:$LiNbO_3$ film is affected by compressive stress along both the perpendicular and the parallel direction. Also the surface of ZnO 3 mol% co-doped Er:$LiNbO_3$film is smoother than the original $LiNbO_3$ substrate surface.

Ferromagnetism in Co-doped ZnO thin films (Co-doped ZnO 자성 반도체 박막의 구조 및 강자성 특성)

  • 박정환;유상우;장현명;김민규
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.178-178
    • /
    • 2003
  • II-Ⅵ족 반도체 중에서 넓은 밴드갭을 가지는 ZnO에 Mn 이온을 doping할 경우 Tc가 상온보다 높을 것이라는 이론적 계산이 2000년 Science에 발표되었다. 이후 ZnO에 전이금속 이온을 doping하여 상온에서도 강자성을 나타내는 자성 반도체 (DMS)를 만들기 위한 연구가 활발히 진행되고 있다. Co-doped ZnO 박막은 PLD로 증착하였을 경우 Tc가 상온보다 높으나 재현성이 낮은 것으로 알려져 있었다. 그러나 최근 sol-gel 방법을 이용하여 Co-doped ZnO 박막을 제조하면 강자기 특성의 재현성을 높일 수 있다는 결과가 보고되었다. 이에 본 연구에서는 sol-gel 방법을 사용하여 여러 조성의 Co-doped ZnO 박막을 합성한 후 이들의 자성 특성을 검토하였다. 이러한 결과를 바탕으로 Co-doped ZnO 박막에서 강자성 발현의 근원을 규명하고자 (ⅰ) 조성에 따른 Co-doped ZnO의 Raman peak과 EXAFS peak의 변화를 측정하여 구조적 특성과 ZnO 내에서의 Co 이온의 상태를 분석하였으며, (ⅱ) Hall 효과 실험으로 carrier density를 측정함으로써 Fermi 준위에서의 파수 벡터의 크기를 산출하고자 하였다.

  • PDF

Fabrication of Ti Doped ZnO Nanostructures by Atomic Layer Deposition and Block Copolymer Templates

  • Kwack, Won-Sub;Zhixin, Wan;Choi, Hyun-Jin;Jang, Seung-Il;Lee, Woo-Jae;Kwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.452-452
    • /
    • 2013
  • ZnO is one of the most attractive transparent conductive oxide (TCO) films because of low toxicity, a wide band gap material and relatively low cost. However, the electrical conductivity of un-doped ZnO is too high to use it as TCO films in practical application. To improve electrical properties of undoped ZnO, transition metal (TM) doped ZnO films such as Al doped ZnO or Ti doped ZnO have been extensively studied. Here, we prepared Ti doped ZnO thin films by atomic layer deposition (ALD) for the application of TCO films. ALD was used to prepare Ti-doped ZnO thin films due to its inherent merits such as large area uniformity, precise composition control in multicomponent thin films, and digital thickness controllability. Also, we demonstrated that ALD method can be utilized for fabricating highly ordered freestanding nanostructures of Ti-doped ZnO thin films by combining with BCP templates, which can potentially used in the photovoltaic applications.

  • PDF

Controllability of Structural, Optical and Electrical Properties of Ga doped ZnO Nanowires Synthesized by Physical Vapor Deposition

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.148-151
    • /
    • 2013
  • The control of Ga doping in ZnO nanowires (NWs) by physical vapor deposition has been implemented and characterized. Various Ga-doped ZnO NWs were grown using the vapor-liquid-solid (VLS) method, with Au catalyst on c-plane sapphire substrate by hot-walled pulsed laser deposition (HW-PLD), one of the physical vapor deposition methods. The structural, optical and electrical properties of Ga-doped ZnO NWs have been systematically analyzed, by changing Ga concentration in ZnO NWs. We observed stacking faults and different crystalline directions caused by increasing Ga concentration in ZnO NWs, using SEM and HR-TEM. A $D^0X$ peak in the PL spectra of Ga doped ZnO NWs that is sharper than that of pure ZnO NWs has been clearly observed, which indicated the substitution of Ga for Zn. The electrical properties of controlled Ga-doped ZnO NWs have been measured, and show that the conductance of ZnO NWs increased up to 3 wt% Ga doping. However, the conductance of 5 wt% Ga doped ZnO NWs decreased, because the mean free path was decreased, according to the increase of carrier concentration. This control of the structural, optical and electrical properties of ZnO NWs by doping, could provide the possibility of the fabrication of various nanowire based electronic devices, such as nano-FETs, nano-inverters, nano-logic circuits and customized nano-sensors.

A Study on the Characteristic of n-ZnO:In/p-Si (111) Heterostructure by Pulsed Laser Deposition (PLD 법으로 증착된 n-ZnO:In/p-Si (111) 이종접합구조의 특성연구)

  • Jang, Bo-Ra;Lee, Ju-Young;Lee, Jong-Hoon;Kim, Jun-Je;Kim, Hong-Seung;Lee, Dong-Wook;Lee, Won-Jae;Cho, Hyeong-Kyun;Lee, Ho-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.419-424
    • /
    • 2009
  • ZnO films doped with different contents of indium ($0.1{\sim}10$ at.%) were deposited on Si (111) substrate by Pulsed Laser Deposition (PLD). The structural, electrical and optical properties of the films were investigated using XRD, AFM, Hall and PL measurement. Results showed that un-doped ZnO film had (002) plane as the c-axis orientated growth, whereas indium doped ZnO films exhibited the peak of (002) and the weak (101) plane. In addition, in the indium doped ZnO films, the electron concentration is ten times higher than that of un-doped ZnO film, while the resistivity is ten times lower than that of un-doped ZnO film. The indium doped ZnO films have UV emission about 380 nm and show a red shift with increasing contents of indium. The I-V curve of the fabricated diode show the typical diode characteristics and have the turn on voltage of about 2 V.

Preparation and Characterization of Al-doped ZnO Transparent Conducting Thin Film by Sol-Gel Processing (솔-젤법에 의한 Al-doped ZnO 투명전도막의 제조 및 특성)

  • Hyun, Seung-Min;Hong, Kwon;Kim, Byong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.149-154
    • /
    • 1996
  • ZnO and Al-doped ZnO thin films were prepared by sol-gel dip-coating method and electrical and optical properties of films were investigated. Using the zinc acetate dihydrate and acetylaceton(AcAc) as a chelating agent stable ZnO sol was synthesized with HCl catalyst. Adding aluminium chloride to the ZnO sol Al-doped ZnO sol could be also synthesized. As Al contents increase the crystallinity of ZnO thin film was retarded by increased compressive stress in the film resulted from the difference of ionic radius between Zn2+ and Al3+ The thickness of ZnO and Al-doped ZnO thin film was in the range of 2100~2350$\AA$. The resistivity of ZnO thin films was measured by Van der Pauw method. ZnO and Al-doped ZnO thin films with annealing temperature and Al content had the resistivity of 0.78~1.65$\Omega$cm and ZnO and Al-doped ZnO thin film post-annealed at 40$0^{\circ}C$ in vacuum(5$\times$10-5 torr) showed the resistivity of 2.28$\times$10-2$\Omega$cm. And the trans-mittance of ZnO and Al-doped ZnO thin film is in the range of 91-97% in visible range.

  • PDF

Fabrication of phosphorus doped ZnO thin film using multi-layer structure (다층 구조를 이용한 Phosphorus 도핑된 ZnO 박막 제작)

  • Kang, Hong-Seong;Lim, Sung-Hoon;Chang, Hyun-Woo;Kim, Gun-Hee;Kim, Jong-Hoon;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.27-29
    • /
    • 2005
  • ZnO and phosphorus doped ZnO thin films (ZnO:P) are deposited by pulsed laser deposition grown on (001) $Al_{2}O_{3}$. ZnO/ZnO:P/ZnO/$Al_{2}O_{3}$ (multi-layer) structure was used for phosphorus doped ZnO fabrication. This multi-layer structure thin film was annealed at $400^{\circ}C$ for 40 min. The electron concentration of that was changed from $10^{19}$ to $10^{16}/cm^{-3}$ after annealing. ZnO thin films with encapsulated structure showed the enhanced structural and optical properties than phosphorus doped ZnO without encapsulated layer. In this study, encapsulated ZnO structure was suggested to enhance electrical, structural and optical properties of phosphorus doped ZnO thin film and it was identified that encapsulated structure could be used to fabricate high quality phosphorus doped ZnO thin film.

  • PDF

p-n heterojunction composed of n-ZnO/p-Zn-doped InP (n-ZnO/p-Zn doped InP의 p-n 이종접합 형성에 관한 연구)

  • Shim, Eun-Sub;Kang, Hong-Seong;Kang, Jeong-Seok;Bang, Seong-Sik;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.126-129
    • /
    • 2001
  • A p-n junction was obtained by the deposition of an n-type ZnO thin film on a p-type Zn-doped InP substrate. The Zn-doped InP substrate has been made by the diffusion of Zn with sealed ampoule technique. The ZnO deposition process was performed by pulsed laser deposition (PLD). The p-n junction was formed and showed a typical I-V characteristic. We will also discuss about the realization of an ultraviolet light-emitting diode (LED). The structure of n-ZnO/p-Zn-doped InP could be a good candidate for the realization of an ultraviolet light-emitting diode or an ultraviolet laser diode.

  • PDF

p-n heterojunction composed of n-ZnO/p-Zn-doped InP (n-ZnO/p-Zn doped InP의 p-n 이종접합 형성에 관한 연구)

  • 심은섭;강홍성;강정석;방성식;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.126-129
    • /
    • 2001
  • A p-n junction was obtained by the deposition of an n-type ZnO thin film on a p-type Zn-doped InP substrate. The Zn-doped InP substrate has been made by the diffusion of Zn with sealed ampoule technique. The ZnO deposition process ws performed by pulsed laser deposition (PLD). The p-n junction was formed and showed a typical I-V characteristic. We will also discuss about the realization of an ultraviolet light-emitting diode (LED). The structure of n-ZnO/p-Zn-doped InP could be a good candidate for the realization of an ultraviolet light-emitting diode or an ultraviolet laser diode.

  • PDF

Comparison of Optical Properties of Ga-doped and Ag-doped ZnO Nanowire Measured at Low Temperature

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.262-264
    • /
    • 2014
  • Pristine ZnO, 3 wt.% Ga-doped (3GZO) and 3 wt.% Ag-doped (3SZO) ZnO nanowires (NWs) were grown using the hot-walled pulse laser deposition (HW-PLD) technique. The doping of Ga and Ag in ZnO NWs was observed by analyzing the optical and chemical properties. We optimized the synthesis conditions, including processing temperature, time, gas flow, and distance between target and substrate for the growth of pristine and doped ZnO NWs. The diameter and length of pristine and doped ZnO NWs were controlled under 200 nm and several ${\mu}m$, respectively. Low temperature photoluminescence (PL) was performed to observe the optical property of doped NWs. We clearly observed the shift of the near band edge (NBE) emission by using low temperature PL. In the case of 3GZO and 3SZO NWs, the center photon energy of the NBE emissions shifted to low energy direction using the Burstein Moss effect. A strong donor-bound exciton peak was found in 3 GZO NWs, while an acceptor-bound exciton peak was found in 3SZO NWs. X-ray photoelectron spectroscopy (XPS) also indicated that the shift of binding energy was mainly attributed to the interaction between the metal ion and ZnO NWs.