• 제목/요약/키워드: Y and Delta connections

검색결과 30건 처리시간 0.021초

이상적인 3상 변압기 결선의 회로 특성 (Circuital Characteristics of Ideal Three-phase Transformer Connections)

  • 박인규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.9-12
    • /
    • 2008
  • Mathematical singularities of circuit equations with three-phase ideal transformer connections are studied. Three-wired wye-wye connections, delta-delta connections, and primary four-wired wye-delta connections are singular. The matrices of their circuit equations have zeros in their eigenvalues. Three-wired wye-delta connections, wye-wye-delta connections, and primary four-wired wye-wye connections are not singular. The physical meaning of their singularities is that they are sensitive and prone to be ill-conditioned. Equivalent shunt admittances representing ion losses and magnetizing inductances make the singular matrices non-singular in wye-connected circuits. And, equivalent series impedances representing copper losses and leakage inductances make the singular matrices non-singular in delta-connected circuits. The tableau analysis is used for the study.

  • PDF

독립 3상 구조를 갖는 이중공극형 영구자석 동기전동기의 Y 및 Delta 결선에 따른 공극제어 (Air-gap Control According to Y and Delta Connections of Double-sided Air-gap Permanent Magnet Synchronous Motor with Independent Three-phase Structure)

  • 허찬녕;황선환
    • 전력전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.249-255
    • /
    • 2017
  • This paper presents air-gap control according to Y and Delta connections of a double-sided air-gap permanent magnet synchronous motor (DA-PMSM) with independent three-phase structure. In particular, the DA-PMSM used in this study can be applied to low-speed and high-torque applications, such as wind turbines, tidal power generations, and electric propulsion ships, because of its modular stators and a rotor with numerous permanent magnets. Unlike conventional three-phase machines, the DA-PMSM has a symmetrical configuration with double-sided air-gap. Therefore, Y/Delta winding connections and serial/parallel configurations between stator modules are possible. To identify the DA-PMSM operating characteristics, mathematical modeling is analyzed according to the Y/Delta connections. Moreover, air-gap control performances by applying the winding connection methods are verified through experimental results.

Nonlinear P-Δ analysis of steel frames with semi-rigid connections

  • Valipour, Hamid R.;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • 제14권1호
    • /
    • pp.1-20
    • /
    • 2013
  • This paper presents the formulation for a novel force-based 1-D compound-element that captures both material and second order P-${\Delta}$ nonlinearities in steel frames. At the nodal points, the element is attached to nonlinear rotational and a translational springs which represent the flexural and axial stiffness of the connections respectively. By decomposing the total strain in the material as well as the generalised displacements of the flexible connections to their elastic and inelastic components, a secant solution strategy based on a direct iterative scheme is introduced and the corresponding solution strategy is outlined. The strain and slope of the deformed element are assumed to be small; however the equilibrium equations are satisfied for the deformed element taking account of P-${\Delta}$ effects. The formulation accuracy and efficiency is verified by some numerical examples on the nonlinear static, cyclic and dynamic analysis of steel frames.

A developed design optimization model for semi-rigid steel frames using teaching-learning-based optimization and genetic algorithms

  • Shallan, Osman;Maaly, Hassan M.;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.173-183
    • /
    • 2018
  • This paper proposes a developed optimization model for steel frames with semi-rigid beam-to-column connections and fixed bases using teaching-learning-based optimization (TLBO) and genetic algorithm (GA) techniques. This method uses rotational deformations of frame members ends as an optimization variable to simultaneously obtain the optimum cross-sections and the most suitable beam-to-column connection type. The total cost of members plus connections cost of the frame are minimized. Frye and Morris (1975) polynomial model is used for modeling nonlinearity of semi-rigid connections, and the $P-{\Delta}$ effect and geometric nonlinearity are considered through a stepped analysis process. The stress and displacement constraints of AISC-LRFD (2016) specifications, along with size fitting constraints, are considered in the design procedure. The developed model is applied to three benchmark steel frames, and the results are compared with previous literature results. The comparisons show that developed model using both LTBO and GA achieves better results than previous approaches in the literature.

로그 모델을 사용한 반강접 철골 골조의 탄성 해석 (Elastic Analysis of Steel Frame with Semi-rigid Connections using the Log Model)

  • 이상섭;문태섭
    • 한국강구조학회 논문집
    • /
    • 제12권5호통권48호
    • /
    • pp.527-535
    • /
    • 2000
  • 철골 구조물의 접합부는 전통적으로 강접 혹은 단순 접합으로 이상화하여 설계되어 졌으나 많은 연구를 통해 이러한 모델링이 불합리할 수 있음이 밝혀져 왔다. 골조의 정확한 해석을 위해 부재의 2차효과($P-{\delta}$효과) 및 구조물 전체의 2차효과($P-{\Delta}$효과)의 고려가 필수적이고, 무엇보다도 접합부의 고유한 강성을 부여하는 것이 중요하다. 즉 실험을 통해 얻은 접합부의 모멘트-회전각을 골조 해석시 있는 그대로 반영할 수 있어야 한다. 이러기 위해 모멘트-회전각을 표현할 수 있는 단일 수식의 개발이 필요하며 지금까지 다양한 수식이 개발되어 보고되고 있다. 본 논문은 기하학적효과 및 접합부 강성을 고려할 수 있도록 이론을 통해 유도한 접합부의 강성행렬에 모멘트-회전각 관계를 표현하는 수정지수 함수 모델, 멱함수 모델 그리고 제안한 로그함수 모델을 사용하여 골조 해석을 실시하고, 그 결과를 통해 유도된 강성행렬의 적용가능성을 알아보고, 제안한 로그함수의 유효성을 밝히고자 한다.

  • PDF

Genetic algorithm based optimum design of non-linear steel frames with semi-rigid connections

  • Hayalioglu, M.S.;Degertekin, S.O.
    • Steel and Composite Structures
    • /
    • 제4권6호
    • /
    • pp.453-469
    • /
    • 2004
  • In this article, a genetic algorithm based optimum design method is presented for non-linear steel frames with semi-rigid connections. The design algorithm obtains the minimum weight frame by selecting suitable sections from a standard set of steel sections such as European wide flange beams (i.e., HE sections). A genetic algorithm is employed as optimization method which utilizes reproduction, crossover and mutation operators. Displacement and stress constraints of Turkish Building Code for Steel Structures (TS 648, 1980) are imposed on the frame. The algorithm requires a large number of non-linear analyses of frames. The analyses cover both the non-linear behaviour of beam-to-column connection and $P-{\Delta}$ effects of beam-column members. The Frye and Morris polynomial model is used for modelling of semi-rigid connections. Two design examples with various type of connections are presented to demonstrate the application of the algorithm. The semi-rigid connection modelling results in more economical solutions than rigid connection modelling, but it increases frame drift.

Optimum design of steel frames with semi-rigid connections using Big Bang-Big Crunch method

  • Rafiee, A.;Talatahari, S.;Hadidi, A.
    • Steel and Composite Structures
    • /
    • 제14권5호
    • /
    • pp.431-451
    • /
    • 2013
  • The Big Bang-Big Crunch (BB-BC) optimization algorithm is developed for optimal design of non-linear steel frames with semi-rigid beam-to-column connections. The design algorithm obtains the minimum total cost which comprises total member plus connection costs by selecting suitable sections. Displacement and stress constraints together with the geometry constraints are imposed on the frame in the optimum design procedure. In addition, non-linear analyses considering the P-${\Delta}$ effects of beam-column members are performed during the optimization process. Three design examples with various types of connections are presented and the results show the efficiency of using semi-rigid connection models in comparing to rigid connections. The obtained optimum semi-rigid frames are more economical solutions and lead to more realistic predictions of response and strength of the structure.

20층 가새 철골구조물의 반강접 접합부에 관한 해석적 연구 (An Analytical Study on Semi-Rigid Connections of 20-Story Braced Steel Structures)

  • 강석봉;김진형
    • 한국강구조학회 논문집
    • /
    • 제12권1호통권44호
    • /
    • pp.1-8
    • /
    • 2000
  • 본 연구에서는 보-기둥 접합부 비선형 거동과 부재 기하비선형을 고려할 수 있는 2차 탄성해석 프로그램을 이용하여 20층 가새 철골구조물에서 반강접 접합부가 구조물의 거동에 미치는 영향을 파악하였다. 구조물 전체에 미치는 영향으로 P-delta 효과와 최상층 수평변위를 확인하였고 국부적인 영향으로 부재력 분배 및 부재에 발생하는 조합응력을 조사하였다. 수평하중과 수직하중을 받는 구조물에 가새와 같이 횡력에 저항하는 구조시스템이 있는 경우 전단접합부를 반강접 접합부로 대체하여도 P-delta 효과 및 최상층 수평변위에 문제가 없었으며 부재력 분배에 의하여 펄 부재치수를 줄일 수 있어 경제적인 구조설계가 가능하였다.

  • PDF

도체접속부 열화에 대한 수명온도상승 모델 (Lifetime Temperature Rise Model for the Degradation of Electric Connections/Contacts)

  • 김정태;김지홍;구자윤;윤지호;함길호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1611-1613
    • /
    • 2000
  • In this study in order to find out the trends and the residual lifetime for electric connections/contacts using infrared image camera, "lifetime temperature rise model" is theoretically proposed on the base of "lifetime resistance model" and to prove this theory, experiments have been performed for various kinds of electric connections/contacts. Two suggestions have been builded up or the "lifetime temperature rise model" ; one is the linear relationship between the temperature rise $\Delta K$ and contact resistance, and the other is the functional relationship between the temperature of electric connections/contacts and the operating time which ascribed in the "lifetime resistance model". From the experimental results, measured values were quite similar to the theoretical value so that two suggestions in "lifetime temperature rise model" were appeared to be correct.

  • PDF

Adopting flexibility of the end-plate connections in steel moment frames

  • Ghassemieh, M.;Baei, M.;Kari, A.;Goudarzi, A.;Laefer, D.F.
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1215-1237
    • /
    • 2015
  • The majority of connections in moment resisting frames are considered as being fully-rigid. Consequently, the real behavior of the connection, which has some level of flexibility, is ignored. This may result in inaccurate predictions of structural response. This study investigates the influence of flexibility of the extended end-plate connections in the steel moment frames. This is done at two levels. First, the actual micro-behavior of extended end-plate moment connections is explored with respect to joint flexibility. Then, the macro-behavior of frames with end-plate moment connections is investigated using modal, nonlinear static pushover and incremental dynamic analyses. In all models, the P-Delta effects along with material and geometrical nonlinearities were included in the analyses. Results revealed considerable differences between the behavior of the structural frame with connections modeled as fully-rigid versus those when flexibility was incorporated, specifically difference occurred in the natural periods, strength, and maximum inter-story drift angle.