• Title/Summary/Keyword: XRD 분석

Search Result 2,855, Processing Time 0.03 seconds

Synthesis and Characterization of Epoxy Silane-modified Silica/Polyurethane-urea Nanocomposite Films (에폭시 변성 실리카 나노입자/폴리우레탄-우레아 나노복합체 필름의 제조 및 특성 연구)

  • Joo, Jin;Kim, Hyeon Seok;Kim, Jin Tae;Yoo, Hye Jin;Lee, Jae Ryung;Cheong, In Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.371-378
    • /
    • 2012
  • Hydrophilic silica nanoparticles (SNPs) were treated by using 3-glycidoxypropyltrimethoxy silane (GPTMS) and then they were blended with polyurethane-urea (PUU) emulsions to obtain SNPs/PUU nanocomposite films. Thermo-mechanical properties of the nanocomposite films were investigated by varying the grafted amount of GPTMS onto SNPs and the contents of SNPs in the PUU matrix. The thermo-mechanical properties of the nanocomposite films were also compared in terms of the dispersibility of SNPs in the PUU matrix and thermal curing of the GPTMS-grafted SNPs. The maximum amount of grafted GPTMS was $1.99{\times}10^{-6}\;mol/m^2$, and which covered ca. 53% of the total SNP surface area. $^{29}Si$ CP/MAS NMR analyses with the deconvolution of peaks revealed the details of polycondensation degree and patterns of GPTMS in the surface modification of SNPs. The surface modification did not significantly affect colloidal stability of the SNPs in aqueous medium; however, the hydrophobic modification of SNPs offered a favorable effect on the dispersibility of SNPs in the PUU matrix as well as better thermal stability. XRD patterns revealed that GPTMS-grafted SNPs broadened the reduced the characteristic peak of polyol in PUU matrix. The composite films became rigid and less flexible as the SNP content increased from 5 wt.% to 20 wt.%. Particularly, Young's modulus and tensile modulus significantly increased after the thermal curing reaction of the epoxy groups in the SNPs.

Exchange-coupling Interaction and Magnetic Properties of BaFe12O19/Ni0.5Zn0.5Fe2O4 Nanocomposite Ferrite (BaFe12O19/Ni0.5Zn0.5Fe2O4 나노복합체 Ferrite의 Exchange-coupling 상호 작용과 자기 특성)

  • Oh, Young-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.81-85
    • /
    • 2014
  • Nano-sized Ba-ferrite, Ni-Zn ferrite and $BaFe_{12}O_{19}/Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanocomposite ferrite were prepared by sol-gel combustion method. Nanocomposite was calcined at temperature range of $600{\sim}900^{\circ}C$ for 1 h. According to the diffraction patterns, hard/soft nanocomposite was indicated to the coexistence of the magnetoplumbite structural $BaFe_{12}O_{19}$ and spinel $Ni_{0.5}Zn_{0.5}Fe_2O_4$ and agree with the standard data (JCPDS 10-0325). The particle size of nanocomposite turn out to be less than 90 nm. The nanocomposite ferrite shows a single-phase magnetization behavior, implying that the hard magnetic phase and soft magnetic phase were well exchange-coupled. The specific saturation magnetization ($M_s$) of the nanocomposite is located between hard ($BaFe_{12}O_{19}$) and soft ferrite ($Ni_{0.5}Zn_{0.5}Fe_2O_4$). The remanence (Mr) of nanocomposite ferrite is much higher than that for the individual $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ ferrite. $(BH)_{max}$ is increased, generally.

C2H5OH-CH2OHCH2OH-Ca(OH)2-CO2계에서의 비정질탄산칼슘의 결정화 연구

  • Kim, Hwan;Ahn, Ji-Whan
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06b
    • /
    • pp.3-27
    • /
    • 1996
  • 분체의 입자 배열이 불규칙한 경우뿐만 아니라 입자 크기가 극미세하여 X선회절분석이 불가능한 경우에도 비정질물질이라 한다. 수용액 속에서 이런 비정질 물질을 합성하기 위해서는 합성용액의 과포화도를 높여 계속 유지시킴에 따라 극미세 1차핵 생성의 지속적인 유도에 따른 입자 성장을 최대한 억제시켜야만 한다. 본 연구에서는 흡습제, 칼슘제 및 식품 첨가제 등으로 이용되는 비정질 탄산칼슘을 계에서 합성하고, 이때 생성된 비정질 상태의 겔을 수용액 환경을 변화시켜가면서 따라 결정화를 유도하고 탄산칼슘의 동질이상을 관찰하였다. CO2의 유속을 11/min, 교반속도를 600rpm으로 고정시키고, Ca(OH)2의 양을 10g에서 50g까지 변화시켜가면서 겔 상태의 비정질 탄산칼슘을 합성하였다. 이때 전기전도도는 CO2의 용해와 더불어 Ca(OH)2의 용해도가 증가함에 따라 변화하였으며, 반응종반부에는 겔화가 시작될 때까지 거의 일정하였다. 따라서, 이러한 사실들로부터 현탁액 내에서의 전기전도도의 변화는 Ca이온의 영향을 받는 것으로 사료된다. 비정질 탄산칼슘은 수용액에서 불안정하여 CO2 가스를 방출하면서 급격히 결정화되는데, 본 연구에서는 Ca(OH)2의 양을 20g으로 하여 위의 방법에 의해 얻어진 겔을 수용액의 종류와 농도 및 결정화 온도, 교반속도를 달리하면서 결정화시켰다. 교반속도를 100rpm으로 하여 물의 온도변화에 다라 결정화시킨 경우 전 온도범위에서 칼사이트상이었으며, 물의 온도가 5$^{\circ}C$일 경우에는 미세한 입자들이 응집된 형태였으나, 그 외의 온도변화조건에서는 모두 평균입경 0.4$\mu\textrm{m}$정도의 비교적 균일하 능면체 형태였다. 또한 교반속도를 500rpm으로 증가시켰을 경우에는 8$0^{\circ}C$에서 침상의 아라코나이트가 소량생성되었음을 SEM사진으로 관찰할 수 있었으며, 소량의 바테라이트도 혼재되어 결정화되었음을 XRD결과로 알 수 있었다. 교반속도를 100rpm으로 한 NH4Cl 0.5mol/l 수용액에서는 입자의 형태와 크기가 불규칙한 칼사이트로 결정화되었으며, MgCl2 0.05mol/l 수용액의 경우에는 순수한 H2O의 경우에서와는 달리 2$0^{\circ}C$에서는 모서리가 무딘 매우 균일한 크기의 칼사이트 입자가 관찰되었으며, 6$0^{\circ}C$부터는 아라고나이트가 생성됨을 관찰할 수 있었다. 따라서, 고온(8$0^{\circ}C$)의 농도 MgCl2 수용액(0.1, 0.2 mol/l)에서 교반속도를 높여(800rpm) 겔을 결정화시킨 결과 아라고나이트의 생성수율이 증가되는 것을 확인할 수 있었다.

  • PDF

Influence of O2-Plasma Treatment on the Thin Films of H2 Post-Treated BZO (ZnO:B) (수소 플라즈마 처리된 BZO 박막에 산소 플라즈마의 재처리 조건에 따른 BZO 박막 특성)

  • Yoo, H.J.;Son, C.G;Yoo, J.H.;Park, C.K.;Kim, J.S.;Park, S.G.;Kang, H.D.;Choi, E.H.;Cho, G.S.;Kwon, G.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.275-280
    • /
    • 2010
  • The influence of $O_2$-plasma treatment on $H_2$ post-treated BZO (ZnO:B) thin film using MOCVD (Metal-Organic Chemical Vapor Deposition) are investigated. An $O_2$-plasma treatment of the $H_2$ post-treated BZO thin films resulted in XRD peak of (100), (101) and (110). Also, electrical properties resulted in an increase in sheet resistance and work function. The weighted optical transmittance and haze at 300~1,100 nm of BZO thin films with $O_2$-plasma treatment on the $H_2$ post-treatment show approximately 86% and 15%, respectively.

High Pressure Behavior Study of the Apophyllite (KF) (고압 하에서 어안석(KF)의 거동 연구)

  • Kim, Young-Ho;Choi, Jinwon;Heo, Sohee;Jeong, Nangyeong;Hwang, Gil Chan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.325-332
    • /
    • 2015
  • Apophyllite (KF)($K_{0.84}Ca_{3.99}Si_{7.70}O_{20}F_{0.72}{\cdot}8H_2O$), one of the sheet silicates, was compressed up to 7.7 GPa at ambient temperature and 15 high pressure data were obtained. Lattice parameters of the starting specimen were as follows: $a_0=8.954(2)\;{\AA}$, $c_0=15.795(2)\;{\AA}$, $V_0=1266.4(4)\;{\AA}^3$. Symmetrical diamond anvil cell was employed with synchrotron radiation in the mode of angular dispersive X-ray diffraction. Bulk modulus was determined to be 59(4) GPa when ${K_0}^{\prime}$ is 4. No clear first order phase transition symptom was observed in the series of XRD pattern. However, second-order phase transition cannot be ruled out from the correlation between normalized pressure and strain.

Synthesis of Mesoporous Silica Using Municipal Solid Waste Incinerator Ash Slag : Influence of NaOH Concentration (생활(生活) 폐기물(廢棄物) 소각재(燒却材) 슬래그를 이용(利用)한 메조포러스 실리카 합성(合成) : NaOH 농도(濃度)의 영향(影響))

  • Han, Yo-Sep;Jung, Jong-Hoon;Park, Jai-Koo
    • Resources Recycling
    • /
    • v.19 no.1
    • /
    • pp.40-48
    • /
    • 2010
  • It was investigated that effects of NaOH concentration on synthesis of mesoporous materials using municipal solid waste incinerator ash slag (MSWI-ash slag). In order to increase the purity and maximize the amount of extracted Si content the raw MSWI-ash slag was mechanically activated. Extraction of Si from the MSWI-ash slag was carried out by alkali treatment using concentrated NaOH solution, which varied from 1M to 4M. Physical properties (i.e., pore size, specific surface area and total pore volume) of the synthesized mesoporous silica were also evaluated as a function of NaOH concentration via BET, SEM, TEM and small-angle X-ray scattering analyses. Over the entire range of NaOH concentration investigated (i.e., 1-4M), the synthesized mesoporous materials were determined to be SBA-15, which exhibited a hexagonal structure with the pore size of approximately 7 nm. On the other hand, specific surface area and total pore volume increased with NaOH concentration up to 3M while the values decreased at 4M, indicating that the optimal NaOH concentration for the synthesized mesoporous silica was approximately 3M. Further comparison analysis between two conditions (3M versus 4M) showed that the decrease in two physical properties at 4M NaOH concentration was likely due to the potential inhibition by excess Na ions on the formation of mesophase and the consequent increase of pore wall thickness by remaining Si ions.

A Study on Desalination Methods for Application of Outdoor Iron Artefacts (옥외 철제문화재 적용을 위한 탈염처리 방법 연구)

  • Lee, Hye-Youn;Cho, Nam-Chul;Kim, Woo-Hyun
    • Journal of Conservation Science
    • /
    • v.25 no.1
    • /
    • pp.49-60
    • /
    • 2009
  • Outdoor iron artefacts are easily corroded by salts, especially $Cl^-$ion, from environmental pollutants and acid rain because of their location, so that they need conservational treatments such as stabilization. However the conservation of outdoor iron artefacts are limited to be consolidated for the present and there are a few the studies for the desalinization. The general desalinization method is that objects are immersed in reagent such as alkaline corrosion inhibiting solutions targeting on buried iron artefacts, thus they are not available for outdoor iron artefacts. In this study, concerning those difficulties, the different desalting method is experimented that materials soaked in alkaline solutions attach to objects and they are packed by waterproof to avoid evaporation. This paper experiment burial iron artefacts at first in order to fine out an adaptable method for outdoor iron artefacts. The soaking materials are Korean traditional paper, gauze, cotton wipers, spill pads and the desalting regent is NaOH 0.1M. Additionally the exiting desalinization method which is to immerse objects in solution is performed to compare. The analyses are microscopes, SEM-EDS, X-ray diffraction, pH meter and Ion chromatography. The result is that spill pads show the best desalting effect out of other materials similar to immersing desalting method.

  • PDF

The Characteristic Analysis of Calcareous Deposit Films Formed on Steel Plate by Cathodic Current Process in Marine Environment (해양환경 중 음극전류 프로세스에 의해 강판에 형성된 석회질 피막의 특성 분석)

  • Park, Jun-Mu;Kang, Jae Wook;Choi, In-Hye;Lee, Seung-Hyo;Moon, Kyung-Man;Lee, Myeong-Hoon
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.2
    • /
    • pp.166-171
    • /
    • 2016
  • Cathodic protection is widely recognized as the most cost effective and technically appropriate corrosion prevention methodology for the port, offshore structures, ships. When applying the cathodic protection method to metal facilities in seawater, on the surface of the metal facilities a compound of calcium carbonate($CaCO_3$) or magnesium hydroxide($Mg(OH)_2$) films are formed by $Ca^{2+}$ and $Mg^{2+}$ ions among the many ionic components dissolving in the seawater. And calcareous deposit films such as $CaCO_3$ and $Mg(OH)_2$ etc. are formed by the surface of the steel product. These calcareous deposit film functions as a barrier against the corrosive environment, leading to a decrease in current demand. On the other hand, the general calcareous deposit film is a compound like ceramics. Therefore, there may be some problems such as weaker adhesive power and the longer time of film formation uniting with the base metal. In this study, we tried to determine and control the optimal condition through applying the principle of cathodic current process to form calcareous deposit film of uniform and compact on steel plate. The quantity of precipitates was analyzed, and both the morphology, component and crystal structure were analyzed as well through SEM, EDS and XRD. And based on the previous analysis, it was elucidated mechanism of calcareous deposit film formed in the sacrificial anode type (Al, Zn) and current density (1, 3, $5A/m^2$) conditions. In addition, the taping test was performed to evaluate the adhesion.

Property of Sintered Y2O3-stabilized Zirconia from Scrap Powders (폐 상안정 지르코니아 분말로 제조한 소결체의 물성 연구)

  • Song, Oh-Sung;Park, Jong-Sung;Nam, Kyung-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1783-1788
    • /
    • 2009
  • We newly propose that we may reuse scrap powders ($Z_rO_2$+8 mol%-$Y_2O_3$) as $Y_2O_3$-stabilized zirconia (YSZ) sintered products through sintering process at 1550$^{circ}C$ for 2hrs. We also prepared the reference specimen from fresh $Z_rO_2$+30 mol%-$Y_2O_3$ powder mixture (celluar type with 1㎛-length). The reference sample showed a dense microstructure with grains of $\sim$10㎛ in diameter, while the sintered sample from scrap powder showed irregular grains of 1$\sim$30 ㎛ in diameter. Through XRD analysis, we confirmed that the reference sample has mixed phases of $Y_2O_3$(cubic), $Z_{r0.8}O_{1.9}$(cubic), and $Z_rO_2$(monoclinic), while the sintered YSZ sample from scrap powder has only tetragonal phase. Moreover, the sintered YSZ from scrap powder showed vickers hardness and apparent density more than 70 and 4.11 g/cc, which implies that it can be suitable for structural material application.

Silicidation Reaction Stability with Natural Oxides in Cobalt Nickel Composite Silicide Process (자연산화막 존재에 따른 코발트 니켈 복합실리사이드 공정의 안정성)

  • Song, Oh-Sung;Kim, Sang-Yeob;Kim, Jong-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.25-32
    • /
    • 2007
  • We investigated the silicide reaction stability between 10 nm-Col-xNix alloy films and silicon substrates with the existence of 4 nm-thick natural oxide layers. We thermally evaporated 10 nm-Col-xNix alloy films by varying $x=0.1{\sim}0.9$ on naturally oxidized single crystal and 70 nm-thick polycrystalline silicon substrates. The films structures were annealed by rapid thermal annealing (RTA) from $600^{\circ}C$ to $1100^{\circ}C$ for 40 seconds with the purpose of silicidation. After the removal of residual metallic residue with sulfuric acid, the sheet resistance, microstructure, composition, and surface roughness were investigated using a four-point probe, a field emission scanning electron microscope, a field ion bean4 an X-ray diffractometer, and an Auger electron depth profiling spectroscope, respectively, to confirm the silicide reaction. The residual stress of silicon substrate was also analyzed using a micro-Raman spectrometer We report that the silicide reaction does not occur if natural oxides are present. Metallic oxide residues may be present on a polysilicon substrate at high silicidation temperatures. Huge residual stress is possible on a single crystal silicon substrate at high temperature, and these may result in micro-pinholes. Our results imply that the natural oxide layer removal process is of importance to ensure the successful completion of the silicide process with CoNi alloy films.

  • PDF