• Title/Summary/Keyword: XLPE insulator

Search Result 38, Processing Time 0.026 seconds

Thermal Conductivity Characteristic of Carbon Nanotube Composites and XLPE Insulator (탄소나노튜브 복합체와 XLPE 절연체의 열전도도 특성)

  • Yang, Jong-Seok;Kook, Jeong-Ho;Park, Noh-Joon;Nah, Chang-Woon;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.160-161
    • /
    • 2006
  • To Improve the mean-life and the reliability of power cable, we have investigated thermal conductivity of XLPE insulator and semiconducting materials in l54[kV] underground power transmission cable. Specimens were made of sheet form with the nine of specimens for measurement. Thermal conductivity were measured by Nano Flash Diffusivity thermal conductivity measurement temperature ranges of XLPE insulator were from 20[$^{\circ}C$] to 90[$^{\circ}C$], and the heating rate was 1[$^{\circ}C$/mm]. In case of semiconducting materials. the measurement temperature ranges of thermal conductivity were from 20[$^{\circ}C$] to 60[$^{\circ}C$], and the heating rate was 1[$^{\circ}C$/min].

  • PDF

Specific Heat and Thermal Conductivity Measurement of CNT/EEA Semiconducting Materials and XLPE Insulator (CNT/EEA 반도전층 재료와 XLPE 절연체의 열적 특성)

  • Yang, Jong-Seok;Lee, Kyoung-Yong;Shin, Dong-Hoon;Park, Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.514-519
    • /
    • 2006
  • To improve the mean-life and the reliability of power cable, we have investigated specific heat (Cp) and thermal conductivity of XLPE insulator and semiconducting materials in 154[kV] underground power transmission cable. Specimens were made of sheet form with the seven of specimens for measurement. Specific heat (Cp) and thermal conductivity were measured by DSC (Differential Scanning Calorimetry) and Nano Flash Diffusivity. Specific-heat measurement temperature ranges of XLPE insulator were from $20[^{\circ}C]\;to\;90[^{\circ}C]$, and the heating rate was $1[^{\circ}C/min]$. And the measurement temperatures of thermal conductivity were $25[^{\circ}C],\;55[^{\circ}C]\;and\;90[^{\circ}C]$. In case of semiconducting materials, the measurement temperature ranges of specific heat were from $20[^{\circ}C]\;to\;60[^{\circ}C]$, and the heating rate was $1[^{\circ}C/min]$. And the measurement temperatures of thermal conductivity were $25[^{\circ}C]\;and\;55[^{\circ}]C$. From these experimental results both specific heat and thermal conductivity were increased by heating rate because volume of materials was expanded according to rise in temperature. We could know that a small amount of CNT has a excellent thermal properties.

Specific Heat and Thermal Conductivity of XLPE Insulator and Semiconductive Materials for 154kV Power Cable (154kV 전력케이블용 XLPE 절연체와 반도전 재료의 비열 및 열전도)

  • Lee, Kyoung-Yong;Yang, Jong-Seok;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.19-24
    • /
    • 2005
  • To improve mean-life and reliability of power cable, we have investigated specific heat (Cp) and thermal conductivity of XLPE insulator and semiconductive materials in 154kV underground power transmission cable. Specimens were respectively made of sheet form with EVA, EEA and EBA added 30wt%, carbon black, and the other was made of sheet form by cutting XLPE insulator in 154kV power cable. Specific heat (Cp) and thermal conductivity were· measured by DSC (Differential Scanning Calorimetry) and Nano Flash Diffusivity. Specific-heat measurement temperature ranges of XLPE insulator were from 20[$^{\circ}C$] to 90[$^{\circ}C$], and the heating rate was 1[$^{\circ}C$/min]. And the measurement temperatures of thermal conductivity were 25[$^{\circ}C$}], 55[$^{\circ}C$] and 90[$^{\circ}C$]. In case of semiconductive materials, the measurement temperature ranges of specific heat were from 20[$^{\circ}C$] to 60[$^{\circ}C$], and the heating rate was 1[$^{\circ}C$/min]. And the measurement temperatures of thermal conductivity were 25[$^{\circ}C$] and 55[$^{\circ}C$]. From these experimental results, both specific heat and thermal conductivity were increased by heating rate because volume of materials was expanded according to rise in temperature.

  • PDF

Breakdown Characteritics of XLPE/EPDM on the Treatment Condition of the Interfacial layer (XLPE/EPDM의 계면처리조건에 따른 절연파괴 특성)

  • 한성구;조정형;이창종;박양범;박강식;한상옥
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.230-233
    • /
    • 1996
  • In this paper, We intended to evaluate characteristics of XLPE/EPDM interface which exists in the cable joint. Because the fault was mainly occurred in this interface. We investigated breakdown characteristics of XLPE/EPDM double layered insulator as a funtion of temperature, pressure, annealing time, kinds of jointmaterial. It was shown that breakdown strength of XLPE/EPDM insulators is higher that of XLPE/XLPE or EPDM/EPDM

  • PDF

Specific Heat and Thermal Conductivity Measurement of XLPE Insulator and Semiconducting Materials (XLPE 절연층과 반도전층 재료의 비열 및 열전도 측정)

  • Lee Kyoung-Yong;Yang Jong-Seok;Choi Yong-Sung;Park Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.6-10
    • /
    • 2006
  • To improve mean-life and reliability of power cable, we have investigated specific heat (Cp) and thermal conductivity of XLPE insulator and semiconducting materials in 154(kV) underground power transmission cable. Specimens were respectively made of sheet form with EVA, EEA and EBA added $30[wt\%],$ carbon black, and the other was made of sheet form by cutting XLPE insulator in 154(kV) power cable. Specific heat (Cp) and thermal conductivity were measured by DSC (Differential Scanning Calorimetry) and Nano Flash Diffusivity. Specific-heat measurement temperature ranges of XLPE insulator were from $20[^{\circ}C]\;to\;90[^{\circ}C],$ and the heating rate was $1[^{\circ}C/mon].$ And the measurement temperatures of thermal conductivity were $25[^{\circ}C],\;55[^{\circ}C]\;and\;90[^{\circ}C].$ In case of semiconducting materials, the measurement temperature ranges of specific heat were from $20[^{\circ}C]\;to\;60[^{\circ}C],$ and the heating rate was $1[^{\circ}C/mon].$ And the measurement temperatures of thermal conductivity were $25[^{\circ}C],\;55[^{\circ}C].$ In addition we measured matrix of semiconducting materials to show formation and growth of carbon black in base resins through the SEM. From these experimental results, both specific heat and thermal conductivity were increased by heating rate because volume of materials was expanded according to rise in temperature.

Breakdown characteristics with temperature variation on XLPE 6.9kV cable insulator at power plants (발전소 6.9kV급 XLPE 케이블 절연재의 온도에 따른 절연파괴 특성분석)

  • Park, Noh-Joon;Yang, Sang-Hyun;Lee, Ki-Joung;Kong, Tae-Sik;Kim, Hee-Dong;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.79-79
    • /
    • 2010
  • In this paper, we present results of the dielectric breakdown test in various 6.9kV power cables used in power plants. The dielectric strength of the different conditioned cables was measured by placing the sliced cable sections in silicone oil bath with needle electrode. The results were analyzed by the Weibull distribution. The shape and scale parameters of the Weibull distribution for each cable sections under test were calculated and evaluated. Collected data base was applied to deterioration trend analysis and lifetime guide was also proposed.

  • PDF

Partial Discharge Characteristics of Ultra-High Voltage CV Cable Insulators by Electrode Shape (전극형상에 의한 초고압 CV케이블 절연체의 부분방전 특성)

  • Kim Gyun-Sig;Kim Byung-Hyun;Jeong Hyeon-Ki;Cha Kwang-Seok
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.712-717
    • /
    • 2005
  • In this thesis, it is investigated that the effect of the cross linked polyethylene(XLPE) insulator do to breakdown phenomenon by the insertion of the needle and bar electrode into XLPE which is used of electric power cable for the ultra-high voltage. The result of the partial discharge properties in the specimen showed that in case of the insertion of needle or bar electrode into XLPE, the effect of the inner discharge become large when the air void is bigger then the clearance of the electrode of the specimen. The closer the distance between the insulator and needle electrode, it takes less time to the insulation breakdown.

  • PDF

Influence of Partial Discharge Properties due to Void in Cable Joint Parts (케이블 접속재 부분방전 특성에 미치는 보이드의 영향)

  • 신종열;홍진웅
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.69-74
    • /
    • 2003
  • To investigate the partial discharge and electric field distribution in cable joint parts, we measured the partial discharge and electric field in specimen. The specimens which cross-linked polyethylene(XLPE) and ethylene propylene diene ethylene(EPDM) are used to insulating material for underground cable md cable jointing parts. The polymers are used to insulating material in switchgear which is a kind of transformer equipment and in ultra-high voltage cable. Its using is increasing gradually, the electrical insulation properties are not only excellent but also mechanical property is excellent. And because it is possible to be made void of several type in insulator while it is produced, which the electrical field distribution is changed by void, it has a critical influence to insulator performance. The underground cable is connecting by the jointing material, insulating breakdown and the electric ageing which are caused by several mixing impurity and the damage of cable insulator layer, which reduced the life of cable while intermediate joint kit is connected. Therefore, the computer simulation is used to estimating insulator performance, XLPE is used to the insulating material of ultra-high voltage cable and EPDM is used to insulator layer in joint material kit, and which are produced as specimen. And it is analyzed the electric field concentrating distribution and partial discharge by modeling of computer simulation in void and cable joint kit.

A Study on Estimation of Life-time under Semiconducting Layer/Needle Electrode in XLPE (반도전층/침전극하에서 XLPE의 수명시간예측)

  • Oh, Ja-Hyung;Kim, Sung-Tak;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1475-1477
    • /
    • 1998
  • In this paper, breakdown strength and time to breakdown are experimented under semiconducting layer/needle electrode in XLPE which is used for power cable insulator. Shape and scale parameters of obtained data are estimated using 2-parameters Weibull distribution. Life-time coefficient(n-value) using shape parameters for breakdown strength and time to breakdown tests is estimated. n-value of 1000 hour aged XLPE showed higher value than that of virgin XLPE. Increase of n-value is estimated by the stability due to removal of by-product and residue gas in XLPE by heating.

  • PDF

Electrical Degradation Pattern Analysis according to XLPE Cable (XLPE 케이블의 전기적 열화 패턴 분석)

  • Min, Chi-Hyun;Gwak, Dong-Sun;Chun, Hyun-Kwon;Choi, Jin-Wook;Kim, Young-Suk;Kim, Sun-Gu;Kim, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.114-120
    • /
    • 2008
  • XLPE cable is using insulator for Cross Linked Polyethylene(XLPE), because insulation Performance is superior and easy comparatively. Need systematization of accident transaction for electrical equipment accident, It is no disposal standard for defect of manufacture and second to accidents. in this paper deals with the change of XLPE cable insulation. To understand the electrical properties of XLPE insulation. Made of XLPE block sample, Penetration fracture Sample and flashover sample. Ogura needles having tip radius of $10[{\mu}m]$ were inserted into each sample. AC voltage of 1[kV/sec] increased at 60[Hz] were apple to breakdown sample and flashover sample. AC voltages of 12[kV], 17[kV] at 60[Hz] were a lied to XLPE block sample. The electrical properties of specimens were measured were measured from initiation of tree and breakdown to their characteristics were analyzed.