• Title/Summary/Keyword: X-rays: galaxies

Search Result 31, Processing Time 0.023 seconds

EUV AND SOFT X-RAY EMISSION IN CLUSTERS OF GALAXIES

  • BOWYER STUART
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.295-297
    • /
    • 2004
  • Observations with EUVE, ROSAT, and BeepoSAX have shown that some clusters of galaxies produce intense EUV emission. These findings have produced considerable interest; over 100 papers have been published on this topic in the refereed literature. A notable suggestion as to the source of this radiation is that it is a 'warm' (106 K) intracluster medium which, if present, would constitute the major baryonic component of the universe. A more recent variation of this theme is that this material is 'warm-hot' intergalactic material condensing onto clusters. Alternatively, inverse Compton scattering of low energy cosmic rays against cosmic microwave background photons has been proposed as the source of this emission. Various origins of these particles have been posited, including an old (${\~}$Giga year) population of cluster cosmic rays; particles associated with relativistic jets in the cluster; and cascading particles produced by shocks from sub-cluster merging. The observational situation has been quite uncertain with many reports of detections which have been subsequently contradicted by analyses carried out by other groups. Evidence supporting a thermal and a non-thermal origin has been reported. The existing EUV, FUV, and optical data will be briefly reviewed and clarified. Direct observational evidence from a number of different satellites now rules out a thermal origin for this radiation. A new examination of subtle details of the EUV data suggests a new source mechanism: inverse Compton scattered emission from secondary electrons in the cluster. This suggestion will be discussed in the context of the data.

LONG-TERM X-RAY VARIABILITIES OF THE SEYFERT GALAXY MCG-2-58-22 : SECULAR FLUX DECREASE AND FLARES

  • CHOI CHUL-SUNG;DOTANI TADAYASU;CHANG HEON- YOUNG;YI INSU
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • We have studied the long-term X-ray light curve (2-10 keV) of the luminous Seyfert 1 galaxy MCG-2-58-22 by compiling data, from various X-ray satellites, which together cover more than 20 years. We have found two distinct types of time variations in the light curve. One is a gradual and secular decrease of the X-ray flux, and the other is the episodic increase of X-ray flux (or flare) by a factor of 2-4 compared with the level expected from the secular variation. We detected 3 such flares in total; a representative duration for the flares is $\~$2 years, with intervening quiescent intervals lasting $\~$6-8 years. We discuss a few possible origins for these variabilities. Though a standard disk instability theory may explain the displayed time variability in the X-ray light curve, the subsequent accretions of stellar debris, from a tidal disruption event caused by a supermassive black hole in MCG-2-58-22, cannot be ruled out as an alternative explanation.

IMAGING THE RADIO HALO IN THE ABELL 2256 CLUSTER OF GALAXIES

  • KIM K.-T.
    • Journal of The Korean Astronomical Society
    • /
    • v.32 no.2
    • /
    • pp.75-82
    • /
    • 1999
  • Diffuse radio emission in Abell 2256 was detected above 3 $\sigma$ with DRAO observations at 1420 MHz. The halo size is $\~13' {\times}10' (\~1h^{-1}_{50}\;Mpc$) in full extent and is elongated along a position angle of about $112^{\circ}$. The total flux density contained in the halo is 30$\pm$10 mJy at 1420 MHz and its spectral index is -2.04$\pm$0.04, showing no evidence for steepening up to 1420 MHz. Using the size estimate, yields a more reliable equipartition magnetic field strength which is $0.34(1 + k)^{2/7}{\mu}G$. In addition, five new radio sources are identified.

  • PDF

ACCRETION-JET MODEL FOR THE HARD X-ray Γ - LX CORRELATION IN BLACK HOLE X-ray BINARIES

  • YANG, QI-XIANG;XIE, FU-GUO;YUAN, FENG;ZDZIARSKI, ANDRZEJ A.;GIERLINSKI, MAREK;HO, LUIS C.;YU, ZHAOLONG
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.565-568
    • /
    • 2015
  • In this work, we study the correlation between the photon index (${\Gamma}$) of the X-ray spectrum and the 2-10 keV X-ray luminosity ($L_X$) for black hole X-ray binaries (BHBs). The BHB sample is mainly from the quiescent, hard and intermediate states, with values of $L_X$ ranging from ${\sim}10^{30.5}$ to $10^{37.5}$ erg $s^{-1}$. We find that the photon index ${\Gamma}$ is positively or negatively correlated with the X-ray luminosity $L_X$, for $L_X$ above or below a critical value, ${\sim}10^{36.5}$ erg $s^{-1}$. This result is consistent with previous works. Moreover, when $L_X{\leq}{\sim}10^{33}$ erg $s^{-1}$, we found that the photon index is roughly independent of the X-ray luminosity. We interpret the above correlations in the framework of a coupled hot accretion flow - jet model. Besides, we also find that in the moderate-luminosity region, different sources may have different anti-correlation slopes, and we argue this diversity is caused by the different value of ${\delta}$, which describes the fraction of turbulent dissipation that directly heats electrons.

GALAXY CLUSTERS IN GAMMA-RAYS: AN ASSESSMENT FROM OBSERVATIONS

  • REIMER OLAF
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.307-313
    • /
    • 2004
  • Clusters of galaxies are believed to constitute a population of astrophysical objects potentially able to emit electromagnetic radiation up to gamma-ray energies. Evidence of the existence of non-thermal radiation processes in galaxy clusters is indicated from observations of diffuse radio halos, hard X-ray and EUV excess emission. The presence of cosmic ray acceleration processes and its confinement on cosmological timescales nearly inevitably yields in predicting energetic gamma-ray emission, either directly deduceably from a cluster's multifreqency emission characteristics or indirectly during large-scale cosmological structure formation processes. This theoretical reasoning suggests several scenarios to actually detect galaxy clusters at gamma-ray wavelengths: Either resolved as individual sources of point-like or extended gamma-ray emission, by investigating spatial-statistical correlations with unidentified gamma-ray sources or, if unresolved, through their contribution to the extragalactic diffuse gamma-ray background. In the following I review the situation concerning the proposed relation between galaxy clusters and high-energy gamma-ray observations from an observational point-of-view.

X-RAY EMISSION FROM THE WARM-HOT INTERGALACTIC MEDIUM

  • KAASTRA JELLE S.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.375-379
    • /
    • 2004
  • In this paper I give an overview of the detection of emission from the warm-hot intergalactic medium (WHIM) in the outer parts of clusters of galaxies. The evidence for the presence of soft excess X-ray emission in 7 out of 21 clusters is summarized, and it is demonstrated that several of these clusters show the signatures of thermal emission in the outer parts. A strong signature is the presence of redshifted O VII emission at 0.57 keV. In the central parts, several clusters show also a soft excess, but m this case the observations cannot well discriminate between a thermal or non-thermal origin of the soft X-ray excess.

X-RAYING LARGE-SCALE STRUCTURE

  • HENRY J. PATRICK
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.371-374
    • /
    • 2004
  • We review the observational evidence for the existence of a warm-hot intergalactic medium (WHIM). We expect that the morphology of this material is similar to that of cosmic rays and magnetic fields in large-scale structure, i.e., filaments connecting clusters of galaxies. Direct evidence for the WHIM, either in emission or absorption, is weak.

NOVEL PICTURE OF THE AGN CENTRAL ENGINE ESTABLISHED BY X-RAY AND OPTICAL SIMULTANEOUS STUDIES

  • NODA, HIROFUMI
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.417-421
    • /
    • 2015
  • We analyzed 0.5-45 keV data of NGC 3227 observed by Suzaku six times between 2008 October 28 and December 2. The count-count plot between the 0.5-3 keV and 3-10 keV bands exhibits a clear break, separating the data into bright and faint phases. Applying the difference spectrum method and time-averaged spectral fits to the phase data, we found the presence of two kinds of variable primary X-rays, (1) a hard primary component with ${\Gamma}{\sim}1.7$ dominating in the faint phase and (2) a soft primary continuum with ${\Gamma}{\sim}2.4$ appearing in the bright phase, both affected by partial absorption. Considering their timing and spectral characteristics, component (1) is presumably identical to a Compton continuum in the low/hard state, while component (2) may correspond to the hard tail emission in the high/soft state, or compact-jet emission. In that case, an accretion ow onto the central super massive black hole in NGC 3227 can be interpreted to include the two different states.

TURBULENCE PRODUCED BY TSUNAMIS IN GALAXY CLUSTERS

  • FUJITA YUTAKA;MATSUMOTO TOMOAKI;WADA KEIICHI
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.571-574
    • /
    • 2004
  • Clusters of galaxies are filled with X-ray emitted hot gas with the temperature of T ${\~}$2-10 keV. Recent X-ray observations have been revealing unexpectedly that many cluster cores have complicated, peculiar X-ray structures, which imply dynamical motion of the hot gas. Moreover, X-ray spectra indicate that radiative cooling of the cool gas is suppressed by unknown heating mechanisms (the 'cooling flow problem'). Here we propose a novel mechanism reproducing both the inhomogeneous structures and dynamics of the hot gas in the cluster cores, based on state-of-the-art hydrodynamic simulations. We showed that acoustic-gravity waves, which are naturally expected during the process of hierarchical structure formation of the universe, surge in the X-ray hot gas, causing a serous impact on the core. This reminds us of tsunamis on the ocean surging into an distant island. We found that the waves create fully-developed, stable turbulence, which reproduces the complicated structures in the core. Moreover, if the wave amplitude is large enough, they can suppress the cooling of the core. The turbulence could be detected in near-future space X-ray missions such as ASTRO-E2.

STUDY OF ULTRALUMINOUS X-RAY SOURCES IN SOME NEARBY GALAXIES

  • Singha, Akram Chandrajit;Devi, A Senorita
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • We present the results of the spectral and temporal analysis of eight X-ray point sources in five nearby (distance < 20 Mpc) galaxies observed with Chandra. For spectral analysis, an absorbed powerlaw and an absorbed diskblackbody were used as empirical models. Six sources were found to be equally fitted by both the models while two sources were better fitted by the powerlaw model. Based on model parameters, we estimate the X-ray luminosity of these sources in the energy range 0.3 - 10.0 keV, to be of the order of ${\sim}10^{39}ergs\;s^{-1}$ except for one source (X-8) with $L_X>10^{40}ergs\;s^{-1}$. Five of these maybe classified as Ultraluminous X-ray sources (ULXs) with powerlaw photon index within the range, ${\Gamma}{\sim}1.63-2.63$ while the inner disk temperature, kT ~ 0.68 - 1.93 keV, when fitted with the disk blackbody model. The black hole masses harboured by the X-ray point sources were estimated using the disk blackbody model to be in the stellar mass range, however, the black hole mass of one source (X-6) lies within the range $68.37M_{\odot}{\leq}M_{BH}{\leq}176.32M_{\odot}$, which at the upper limit comes under the Intermediate mass black hole range. But if the emission is considered to be beamed by a factor ~ 5, the black hole mass reduces to ${\sim}75M_{\odot}$. The timing analysis of these sources does not show the presence of any short term variations in the kiloseconds timescales.