• 제목/요약/키워드: X-ray target

검색결과 465건 처리시간 0.031초

W-target 투과 양극형 Soft x-ray tube의 개발 및 특성분석 (Development and Characteristics of the Soft x-ray transmission W-target tube)

  • 김성수;김도윤
    • 한국진공학회지
    • /
    • 제16권4호
    • /
    • pp.305-310
    • /
    • 2007
  • W-target 투과양극형 x-ray tube를 개발하고, 특성을 조사하였다. 관전압이 12kV이하에서는 연속 x-ray만 방출되었고, 12kV 이상에서부터 특성 x-ray가 관측되었다. 연속 x-ray와 특성 x-ray의 에너지 분포 및 선량 특성을 조사한 결과 알려진 결과와 잘 일치함을 알 수 있었다. 또한 상용화된 제품과의 비교에서, 기존 제품 이상의 성능을 가질 수 있음을 확인하였다. 따라서 본 연구에서 개발된 x-ray tube는 상용화할 수 있을 만큼 충분히 우수한 특성을 가지고 있음을 확인하였다.

필름 두께 측정용 투과 양극형 x-ray tube의 개발 및 특성 (Development and Characteristics of the x-ray transmission anode tube for the thickness measurement of film)

  • 김성수;김도윤
    • 한국진공학회지
    • /
    • 제17권3호
    • /
    • pp.240-246
    • /
    • 2008
  • 수십에서 수백 ${\mu}m$ 영역의 필름 두께 측정에 적용하기 위한 Ag-target 투과양극형 x-ray tube를 개발하고 특성을 조사하였다. 10kV 부근의 관전압에서 x-ray 에너지의 분포 및 선량특성을 조사하고 W-target tube와 비교하여 논의하였다. 또한 Ag-target tube와 W-target tube를 이용하여 Ny film과 PP film의 두께변화에 따른 x-ray의 투과 특성으로 조사하였고, 그 결과 개발된 x-ray tube는 필름두께 측정용으로 적용할 수 있을 만큼 충분히 좋은 특성을 나타내었다.

Effect of Target Angle and Thickness on the Heel Effect and X-ray Intensity Characteristics for 70 kV X-ray Tube Target

  • Kim, Gyehong;Lee, Rena
    • 한국의학물리학회지:의학물리
    • /
    • 제27권4호
    • /
    • pp.272-276
    • /
    • 2016
  • To investigate the optimum x-ray tube design for the dental radiology, factors affecting x-ray beam characteristics such as tungsten target thickness and anode angle were evaluated. Another goal of the study was to addresses the anode heel effect and off-axis spectra for different target angles. MCNPX has been utilized to simulate the diagnostic x-ray tube with the aim of predicting optimum target angle and angular distribution of x-ray intensity around the x-ray target. For simulation of x-ray spectra, MCNPX was run in photon and electron using default values for PHYS:P and PHYS:E cards to enable full electron and photon transport. The x-ray tube consists of an evacuated 1 mm alumina envelope containing a tungsten anode embedded in a copper part. The envelope is encased in lead shield with an opening window. MCNPX simulations were run for x-ray tube potentials of 70 kV. A monoenergetic electron source at the distance of 2 cm from the anode surface was considered. The electron beam diameter was 0.3 mm striking on the focal spot. In this work, the optimum thickness of tungsten target was $3{\mu}m$ for the 70 kV electron potential. To determine the angle with the highest photon intensity per initial electron striking on the target, the x-ray intensity per initial electron was calculated for different tungsten target angles. The optimum anode angle based only on x-ray beam flatness was 35 degree. It should be mentioned that there is a considerable trade-off between anode angle which determines the focal spot size and geometric penumbra. The optimized thickness of a target material was calculated to maximize the x-ray intensity produced from a tungsten target materials for a 70 keV electron energy. Our results also showed that the anode angle has an influencing effect on heel effect and beam intensity across the beam.

40kV용 투과양극형 x-ray tube에 의한 X-ray 형광 특성 (Characteristics of the X-ray Fluorescence by the 40kV transmission anode x-ray tube)

  • 김성수;김도윤
    • 한국진공학회지
    • /
    • 제17권3호
    • /
    • pp.247-252
    • /
    • 2008
  • 휴대용 XRF(X-Ray Fluorescence) 장치에 적용하기 위하여 개발한 투과 양극형 x-ray tube를 이용하여 XRF 실험을 하고, x-ray tube가 XRF data에 미치는 영향을 조사하였다. W-target tube와 Rh-target tube를 이용하여 측정한 XRF data는 알려진 결과와 잘 일치하였다. 35 kV와 관전압과 $40{\mu}A$의 관전류에서 W-target tube로 측정한 Fe $K_{\alpha}$-line의 FWHM은 약 180 eV로써, 이 값은 물질의 성분분석을 하기에 충분한 것으로 확인하였다. XRF data와 x-ray tube의 적분강도 곡선을 비교 분석해 본 결과, 휴대용 XRF 장치에는 W-Target tube보다는 Rh-Target tube를 사용하는 것이 더 유리함을 밝혀내었다.

Determination of Tungsten Target Parameters for Transmission X-ray Tube: A Simulation Study Using Geant4

  • Nasseri, Mohammad M.
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.795-798
    • /
    • 2016
  • Transmission X-ray tubes based on carbon nanotube have attracted significant attention recently. In most of these tubes, tungsten is used as the target material. In this article, the well-known simulator Geant4 was used to obtain some of the tungsten target parameters. The optimal thickness for maximum production of usable X-rays when the target is exposed to electron beams of different energies was obtained. The linear variation of optimal thickness of the target for different electron energies was also obtained. The data obtained in this study can be used to design X-ray tubes. A beryllium window was considered for the X-ray tube. The X-ray energy spectra at the moment of production and after passing through the target and window for different electron energies in the 30-110 keV range were also obtained. The results obtained show that with a specific thickness, the target material itself can act as filter, which enables generation of X-rays with a limited energy.

40kV용 투과 양극형 x-ray tube의 개발 및 특성분석 (Development and its Characteristics of the 40kV x-ray transmission anode target tube)

  • 김성수;김도윤
    • 한국진공학회지
    • /
    • 제17권3호
    • /
    • pp.234-239
    • /
    • 2008
  • 휴대용 XRF (X-Ray Fluorescence) 장치에 적용할 수 있는 40 kV용 투과 양극형 W-Target tube와 Rh-Target tube를 개발하고 특성을 조사하였다. 특성 x-ray의 에너지와 연속 x-ray의 선량특성은 알려진 결과와 잘 일치함을 확인하였고, 최대 선량을 추출하기 위한 양극금속 박막의 최적 두께는 W-target tube의 경우 약 $2.6{\mu}m$, Rh-target tube의 경우 약 $2.7{\mu}m$ 임을 밝혀내었다. 또한 관전압 40 kV, 관전류 $60{\mu}A$로 30분 동안 연속적으로 작동시켰을 때 양극에서의 온도는 $50^{\circ}C$를 넘지 않아 휴대용 XRF장치에 적용할 수 있음을 확인하였다.

Monte Carlo N-Particle Extended Code를 이용한 연 X선 정전기제거장치의 최적제작에 관한 연구(II) (A Study on the Optimal Make of X-ray Ionizer using the Monte Carlo N-Particle Extended Code(II))

  • 정필훈;이동훈
    • 한국안전학회지
    • /
    • 제32권6호
    • /
    • pp.29-33
    • /
    • 2017
  • In order to solve this sort of electrostatic failure in Display and Semiconductor process, Soft X-ray ionizer is mainly used. Soft X-ray Ionizer does not only generate electrical noise and minute particle but also is efficient to remove electrostatic as it has a wide range of ionization. There exist variable factors such as type of tungsten thickness deposited on target, Anode voltage etc., and it takes a lot of time and financial resource to find optimal performance by manufacturing with actual X-ray tube source. Here, MCNPX (Monte Carlo N-Particle Extended) is used for simulation to solve this kind of problem, and optimum efficiency of X-ray generation is anticipated. In this study, X-ray generation efficiency was compared according to target material thickness using MCNPX and actual X-ray tube source under the conditions that tube voltage is 5 keV, 10 keV, 15 keV and the target Material is Tungsten(W). At the result, In Tube voltage 5 keV and distance 100 mm, optimal target thickness is $0.05{\mu}m$ and fastest decay time appears + decay time 0.28 sec. - deacy time 0.30 sec. In Tube voltage 10keV and distance 100 mm, optimal target Thickness is $0.16{\mu}m$ and fastest decay time appears + decay time 0.13 sec. - deacy time 0.12 sec. In the tube voltage 15 keV and distance 100 mm, optimal target Thickness is $0.28{\mu}m$ and fastest decay time appears + decay time 0.04 sec. - deacy time 0.05 sec.

A design of transmission-type multi-target X-ray tube based on electric field modulation

  • Zhao, Lei;Jia, Wenbao;Jin, Limin;Shan, Qing;Cheng, Can;Zhu, Hongkui;Hei, Daqian
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.3026-3034
    • /
    • 2021
  • Multi-target X-ray tube is a new type X-ray source, and can be applied in many fields such as sensitive X-ray fluorescence analysis and medical imaging. In this work, we report an electric field modulation multi-target X-ray tube, which contains four targets (Cr, Ni, Au, Mo) coated on a Beryllium (Be) window. A four-valve electric field deflector was developed to deflect the electron beam to bombard the corresponding targets. Particle dynamics analysis software was employed to simulate the particle tracking of electron beam. The results show that the 30 keV electron beam could get a 6.7 mm displacement on the target plane by 105 V/m electric field. The focus areas are about 2 mm × 5 mm and 4 mm × 2.5 mm after deflection in two directions. Thermal behavior calculated by ANSYS shows that the designed target assembly could withstand a 10 W continuous power. The optimum target thicknesses and emission spectra were obtained by Geant4 when the thickness of Be window was 300 mm and the electron beam incident angle was 0.141 rad. The results indicate that this multi-target X-ray tube could provide different X-ray sources effectively.

Monte Carlo N-Particle Extended 코드를 이용한 연X선 정전기제거장치의 최적설계에 관한 연구 (A Study on the Optimal Design of Soft X-ray Ionizer using the Monte Carlo N-Particle Extended Code)

  • 정필훈;이동훈
    • 한국안전학회지
    • /
    • 제32권2호
    • /
    • pp.34-37
    • /
    • 2017
  • In recent emerging industry, Display field becomes bigger and bigger, and also semiconductor technology becomes high density integration. In Flat Panel Display, there is an issue that electrostatic phenomenon results in fine dust adsorption as electrostatic capacity increases due to bigger size. Destruction of high integrated circuit and pattern deterioration occur in semiconductor and this causes the problem of weakening of thermal resistance. In order to solve this sort of electrostatic failure in this process, Soft X-ray ionizer is mainly used. Soft X-ray Ionizer does not only generate electrical noise and minute particle but also is efficient to remove electrostatic as it has a wide range of ionization. X-ray Generating efficiency has an effect on soft X-ray Ionizer affects neutralizing performance. There exist variable factors such as type of anode, thickness, tube voltage etc., and it takes a lot of time and financial resource to find optimal performance by manufacturing with actual X-ray tube source. MCNPX (Monte Carlo N-Particle Extended) is used for simulation to solve this kind of problem, and optimum efficiency of X-ray generation is anticipated. In this study, X-ray generation efficiency was measured according to target material thickness using MCNPX under the conditions that tube voltage is 5 keV, 10 keV, 15 keV and the target Material is Tungsten(W), Gold(Au), Silver(Ag). At the result, Gold(Au) shows optimum efficiency. In Tube voltage 5 keV, optimal target thickness is $0.05{\mu}m$ and Largest energy of Light flux appears $2.22{\times}10^8$ x-ray flux. In Tube voltage 10 keV, optimal target Thickness is $0.18{\mu}m$ and Largest energy of Light flux appears $1.97{\times}10^9$ x-ray flux. In Tube voltage 15 keV, optimal target Thickness is $0.29{\mu}m$ and Largest energy of Light flux appears $4.59{\times}10^9$ x-ray flux.