• Title/Summary/Keyword: X-ray photoelectron Spectroscopy

Search Result 1,382, Processing Time 0.031 seconds

Tribological properties of sputtered boron carbide coating and the effect of $CH_4$ reactive component of processing gas

  • Cuong Pham Duc;Ahn Hyo-Sok;Kim Jong-Hee;Shin Kyung-Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.78-84
    • /
    • 2003
  • Boron carbide thin coatings were deposited on silicon wafers by DC magnetron sputtering using a $B_4C$ target with As as processing gas. Various amounts of methane gas $(CH_4)$ were added in the deposition process to better understand their influence on tribological properties of the coatings. Reciprocating wear tests employing an oscillating friction wear tester were performed to investigate the tribological behaviors of the coatings in ambient environment. The chemical characteristics of the coatings and worn surfaces were studied using X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). It revealed that $CH_4$ addition to As processing gas strongly affected the tribologcal properties of sputtered boron carbide coating. The coefficient of friction was reduced approximately from 0.4 to 0.1, and wear resistance was improved considerably by increasing the ratio of $CH_4$, gas component from 0 to $1.2\;vol\;\%$. By adding a sufficient amount of $CH_4\;(1.2\%)$ in the deposition process, the boron carbide coating exhibited lowest friction and highest wear resistance.

  • PDF

Growth environments depends interface and surface characteristics of yttria-stabilized zirconia thin films

  • Bae, Jong-Seong;Park, Su-Hwan;Park, Sang-Sin;Hwang, Jeong-Sik;Park, Seong-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.309-309
    • /
    • 2011
  • There have been large research activities on the high quality oxide films for the realization oxide based electronics. However, the interface interdiffusion prohibits achieving high quality oxide films, when the oxide films are grown on non-oxide substrates. In the case of Si substrates, there exist lattice mismatch and interface interdiffusion when oxide films deposited on direct Si surface. In this presentation, we report the interface characteristics of yttria-stabilized zirconia films grown on silicon substrates. From x-ray reflectivity analysis we found that the film thickness and interface roughness decreased as the growth temperature increased, indicating that the growth mechanism varies and the chemical reaction is limited to the interface as the growth condition varies. Furthermore, the packing density of the film increased as the growth temperature increased and the film thickness decreased. X-ray photoelectron spectroscopy analysis of very thin films revealed that the amount of chemical shift increased as the growth temperature increased. Intriguingly, the direction of the chemical shift of Zr was opposite to that of Si due to the second nearest neighbor interaction.

  • PDF

Surface Characterization of the d-PMMA Thin Films Treated by Oxygen Plasma (산소 플라즈마 처리된 d-PMMA 박막의 표면특성 분석)

  • Kim, Soong-Hoon;Choi, Dong-Jin;Lee, Jeong-Su;Choi, Ho-Suk
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.263-267
    • /
    • 2009
  • In order to improve the hydrophilic property on the surface of d-PMMA(deuterated poly-(methyl methacrylate)) film, it was exposed to oxygen plasma, All experimental conditions were same except to plasma exposure time that was varied from 0 to 180 s, The effects according to the exposure time were identified using contact angles, X-ray reflectometer(XRR), neutron reflectometer(NR), and X-ray photoelectron spectroscopy(XPS). By confirming that as the exposure time increases, water contact angle decreases while the composition of oxygen increases, it was confirmed that the composition of oxygen has a huge influence on improving the hydrophilic property. The physical characters as a function of the exposure time were investigated by the XRR. By analyzing complementally the results of the XRR, NR, and XPS, more detailed chemical bonding conditions were studied by obtaining not only composition of the carbon and oxygen but that of the hydrogen.

XPD Analysis on the Cleaved GaAs(110) Surface (절개된 GaAs(110) 면의 XPD 분석)

  • Lee, Deok-Hyeong;Jeong, Jae-Gwan;O, Se-Jeong
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.171-180
    • /
    • 1993
  • X-ray photoelectron diffraction (XPD) is used to characterize the crystallographically cleaved GaAs(110) surface. By using polar and azimuthal scans of the usual angle-resolved x-ray photoelectron spectroscopy, we get the reconstruction geometry of the clean GaAs(110) surface from the intensity ratio of Ga 3d core-level peaks. The reconstruction parameters are determined by fitting the diffraction pattern with the single scattering cluster (SSC) model, and the results show similar tendencies to those obtained by other techniques.

  • PDF

X-Ray Photoelectron Spectroscopy Studies of Pd Supported MgO/Mg (X-선 광전자분광법을 이용한 MgO/Mg 표면에 증착된 Pd의 분석)

  • Tai, Wei-Sheng;Seo, Hyun-Ook;Kim, Kwang-Dae;Kim, Young-Dok
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.281-287
    • /
    • 2009
  • Pd was deposited on magnesium-oxide-covered magnesium ribon substrate by metal thermal evaporation method in high vacuum. The electronic and chemical properties of Pd samples with different coverages were studied using in-situ X-ray Photoelctron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (SEM). For relatively lower amounts of Pd deposited(< 1nm), separate Pd particles could be observed, whereas at higher Pd coverages, Pd thin films caused by agglomeration of Pd nanoparticles was found. The metal support interaction with Pd-support was observed. The Pd atoms on the metal oxide/metal interface were partially negative charged by charge transfer.

Surface Analysis of Aluminum Bonding Pads in Flash Memory Multichip Packaging

  • Son, Dong Ju;Hong, Sang Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.221-225
    • /
    • 2014
  • Although gold wire bonding techniques have already matured in semiconductor manufacturing, weakly bonded wires in semiconductor chip assembly can jeopardize the reliability of the final product. In this paper, weakly bonded or failed aluminum bonding pads are analyzed using X-ray photoelectron spectroscopy (XPS), Auger electron Spectroscopy (AES), and energy dispersive X-ray analysis (EDX) to investigate potential contaminants on the bond pad. We found the source of contaminants is related to the dry etching process in the previous manufacturing step, and fluorocarbon plasma etching of a passivation layer showed meaningful evidence of the formation of fluorinated by-products of $AlF_x$ on the bond pads. Surface analysis of the contaminated aluminum layer revealed the presence of fluorinated compounds $AlOF_x$, $Al(OF)_x$, $Al(OH)_x$, and $CF_x$.

Effect of Various Supports on the Physico-chemical Properties of V-Sb Oxides in the Oxidative Dehydrogenation of Isobutane

  • Shamilov, N.T.;Vislovskiy, V.P.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.5
    • /
    • pp.812-818
    • /
    • 2011
  • [ $V_{0.9}Sb_{0.1}O_x$ ]systems, bulk and deposited on different supports (five types of ${\gamma}$-aluminas, ${\alpha}$-alumina, silica-alumina, silica gel, magnesium oxide), have been tested in the oxidative dehydrogenation (ODH) of iso-butane. This statement is derived from the data obtained by a set of characterisation techniques(specific surface area measurements, X-ray diffraction, X-ray photoelectron spectroscopy, laser Raman spectroscopy, in situ differential scanning calorimetry and in situ diffuse reflectance-absorption infrared Fourier transform spectroscopy).

Effects of Vanadium Doping on Magnetic Properties of Inverse Spinel Fe3O4 Thin Films (역스피넬 Fe3O4 박막의 바나듐 도핑에 따르는 자기적 성질 변화)

  • Kim, Kwang-Joo;Choi, Seung-Li;Park, Young-Ran;Park, Jae-Yun
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.18-22
    • /
    • 2006
  • Effects of V substitution of Fe on the magnetic properties of $Fe_3O_4$ have been investigated by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), conversion electron Mossbauer spectroscopy (CEMS), and vibrating sample magnetometry (VSM) measurements on sol-gel-grown films. XRD data indicates that the $V_xFe_{3-x}O_4$ films maintain cubic structure up to x=1.0 with little change of the lattice constant. Analyses on V 2p and Fe 2p levels of the XPS data indicate that V exist as $V^{3+}$ mostly in the $V_xFe_{3-x}O_4$ films with the density of $V^{2+}$ ions increasing with increasing V content. Analyses on the CEMS data indicate that $V^{3+}$ ions substitute tetrahedral $Fe^{3+}$ sites mostly, while $V^{2+}$ ions octahedral $Fe^{2+}$ sites. Results of room-temperature VSM measurements on the films reveal that the saturation magnetization for the x=0.14 sample is larger than that of $Fe_3O_4$, while it becomes smaller than that of $Fe_3O_4$ for $x{\geq}0.5$. The coercivity of the $V_xFe_{3-x}O_4$ films is found to increase with x, attributed to the increase of anisotropy by the substitution of $V^{2+}(d^3)$ ions into the octahedral sites.

Characterization of chemical vapor deposition-grown graphene films with various etchants

  • Choi, Hong-Kyw;Kim, Jong-Yun;Jeong, Hu-Young;Choi, Choon-Gi;Choi, Sung-Yool
    • Carbon letters
    • /
    • v.13 no.1
    • /
    • pp.44-47
    • /
    • 2012
  • We analyzed the effect of etchants for metal catalysts in terms of the characteristics of resulting graphene films, such as sheet resistance, hall mobility, transmittance, and carrier concentration. We found the residue of $FeCl_3$ etchant degraded the sheet resistance and mobility of graphene films. The residue was identified as an iron oxide containing a small amount of Cl through elemental analysis using X-ray photoelectron spectroscopy. To remove this residue, we provide an alternative etching solution by introducing acidic etching solutions and their combinations ($HNO_3$, HCl, $FeCl_3$ + HCl, and $FeCl_3+HNO_3$). The combination of $FeCl_3$ and acidic solutions (HCl and $HNO_3$) resulted in more enhanced electrical properties than pure etchants, which is attributed to the elimination of left over etching residue, and a small amount of amorphous carbon debris after the etching process.

Tribological Behavior Analysis of CrMoN Coating by XPS (XPS 분석을 통한 CrMoN 코팅의 마찰마모 거동 연구)

  • Yang, Young-Hwan;Lyo, In-Woong;Park, Sang-Jin;Lim, Dea-soon;Oh, Yoon-Suk
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.549-556
    • /
    • 2012
  • The tribological behavior of CrMoN films with respect to surface chemistry was investigated by using X-ray photoelectron spectroscopy (XPS). All of the films were prepared from a hybrid PVD system consisting of DC unbalanced magnetron (UBM) sputtering and arc ion plating (AIP) sources. The tribological property of the films was evaluated by a friction coefficient using a Ball-on-disk type tribometer. The chemistry of wear track was analyzed by energy dispersive spectroscopy (EDS) and XPS. The friction coefficient was measured to be 0.4 for the CrMoN film, which is lower than that of a monolithic CrN film. EDS and XPS results imply the formation of an oxide layer on the coating surface, which was identified as molybdenum oxide phases, known to be a solid lubricant during the wear test.