• Title/Summary/Keyword: X-box Binding Protein-1 (XBP1)

Search Result 22, Processing Time 0.025 seconds

Hypothermia Regulates Endoplasmic Reticulum (ER) Stress through the X-box Binding Protein-1 (XBP1) Gene Expression in PC12 Cells

  • Yoo, Bo-Kyung;Kwon, Kisang;Lee, Eun Ryeong;Kwon, O-Yu
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.416-420
    • /
    • 2017
  • Endoplasmic reticulum (ER) stress induces unfolded protein response (UPR) via inositol-requiring enzyme 1 (IRE1) activation, which sends a molecular signal for X box-binding protein 1 (XBP1) mRNA splicing in the cytosol. IRE1 endoribonuclease activity induces cleavage of XBP1 mRNA. The XBP1 mRNA is then ligated by an uncharacterized RNA ligase and translated to produce spliced XBP1 by 23 nt removed in which contains the PstI restriction enzyme site. The splicing of XBP1 mRNA can be detected by semiquantitative RT-PCR, and then splicing of XBP1 is a useful tool to measure the genetic variability in ER stress. In this study, we have estimated IRE1-dependent splicing of XBP1 mRNA under conditions of various hypothermia. The results indicated that hypothermia regulated ER stress. This study demonstrated that hypothermia is closely related to ER stress and may be useful for early diagnosis of ER-associated disease.

The effect of heat stress on frame switch splicing of X-box binding protein 1 gene in horse

  • Lee, Hyo Gun;Khummuang, Saichit;Youn, Hyun-Hee;Park, Jeong-Woong;Choi, Jae-Young;Shin, Teak-Soon;Cho, Seong-Keun;Kim, Byeong-Woo;Seo, Jakyeom;Kim, Myunghoo;Park, Tae Sub;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1095-1103
    • /
    • 2019
  • Objective: Among stress responses, the unfolded protein response (UPR) is a well-known mechanism related to endoplasmic reticulum (ER) stress. ER stress is induced by a variety of external and environmental factors such as starvation, ischemia, hypoxia, oxidative stress, and heat stress. Inositol requiring enzyme $1{\alpha}$ ($IRE1{\alpha}$)-X-box protein 1 (XBP1) is the most conserved pathway involved in the UPR and is the main component that mediates $IRE1{\alpha}$ signalling to downstream ER-associated degradation (ERAD)- or UPR-related genes. XBP1 is a transcription factor synthesised via a novel mechanism called 'frame switch splicing', and this process has not yet been studied in the horse XBP1 gene. Therefore, the aim of this study was to confirm the frame switch splicing of horse XBP1 and characterise its dynamics using Thoroughbred muscle cells exposed to heat stress. Methods: Primary horse muscle cells were used to investigate heat stress-induced frame switch splicing of horse XBP1. Frame switch splicing was confirmed by sequencing analysis. XBP1 amino acid sequences and promoter sequences of various species were aligned to confirm the sequence homology and to find conserved cis-acting elements, respectively. The expression of the potential XBP1 downstream genes were analysed by quantitative real-time polymerase chain reaction. Results: We confirmed that splicing of horse XBP1 mRNA was affected by the duration of thermal stress. Twenty-six nucleotides in the mRNA of XBP1 were deleted after heat stress. The protein sequence and the cis-regulatory elements on the promoter of horse XBP1 are highly conserved among the mammals. Induction of putative downstream genes of horse XBP1 was dependent on the duration of heat stress. We confirmed that both the mechanisms of XBP1 frame switch splicing and various binding elements found in downstream gene promoters are highly evolutionarily conserved. Conclusion: The frame switch splicing of horse XBP1 and its dynamics were highly conserved among species. These results facilitate studies of ER-stress in horse.

Engineering the Cellular Protein Secretory Pathway for Enhancement of Recombinant Tissue Plasminogen Activator Expression in Chinese Hamster Ovary Cells: Effects of CERT and XBP1s Genes

  • Rahimpour, Azam;Vaziri, Behrouz;Moazzami, Reza;Nematollahi, Leila;Barkhordari, Farzaneh;Kokabee, Leila;Adeli, Ahmad;Mahboudi, Fereidoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1116-1122
    • /
    • 2013
  • Cell line development is the most critical and also the most time-consuming step in the production of recombinant therapeutic proteins. In this regard, a variety of vector and cell engineering strategies have been developed for generating high-producing mammalian cells; however, the cell line engineering approach seems to show various results on different recombinant protein producer cells. In order to improve the secretory capacity of a recombinant tissue plasminogen activator (t-PA)-producing Chinese hamster ovary (CHO) cell line, we developed cell line engineering approaches based on the ceramide transfer protein (CERT) and X-box binding protein 1 (XBP1) genes. For this purpose, CERT S132A, a mutant form of CERT that is resistant to phosphorylation, and XBP1s were overexpressed in a recombinant t-PA-producing CHO cell line. Overexpression of CERT S132A increased the specific productivity of t-PA-producing CHO cells up to 35%. In contrast, the heterologous expression of XBP1s did not affect the t-PA expression rate. Our results suggest that CERT-S132A-based secretion engineering could be an effective strategy for enhancing recombinant t-PA production in CHO cells.

Overexpressed Derlin-1 Inhibits ER Expansion in the Endothelial Cells Derived from Human Hepatic Cavernous Hemangioma

  • Hu, Dong;Ran, Yu-Liang;Zhong, Xing;Hu, Hai;Yu, Long;Lou, Jin-Ning;Sun, Li-Xing;Yang, Zhi-Hua
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.677-685
    • /
    • 2006
  • Proteins that are unfolded or misfolded in the endoplasmic reticulum (ER) must be targeted for refolding or degradation to maintain the homeostasis of the ER. Derlin-1 was reportedly implicated in the retro-translocation of misfolded proteins from the ER to the cytosol for degradation. In this report, we showed that Derlin-1 was down-regulated in the endothelial cells derived from human hepatic cavernous hemangioma (CHEC) compared with other tested cells. Electron microscopy analysis showed that ER was aberrantly enlarged in CHEC cells, but not in other tested cells. When overexpressed, Derlin-1 induced the dilated ER to return normal size. This ER dynamic was associated with the activation of unfolded protein response (UPR). In CHEC cells where Derlin-1 was down-regulated, increased expression of the immunoglobulin heavy chain-binding protein (Bip) and UPR-specific splicing of X-box DNA-binding protein 1 (XBP1) mRNA were detected, as compared with that in other tested cells, indicating that UPR was activated. After Derlin-1 overexpression, the extent of UPR activation diminished, as evidenced by decreased expression of Bip, reduced amount of the spliced form of XBP1 ($XBP1_S$), and elevated expression of the unspliced form of XBP1 ($XBP1_U$). Taken together, these findings provide another example of a single protein being able to affect ER dynamic in mammalian cells, and an insight into the possible molecular mechanism(s).

Hepatitis C Virus Non-structural Protein NS4B Can Modulate an Unfolded Protein Response

  • Zheng Yi;Gao Bo;Ye Li;Kong Lingbao;Jing Wei;Yang Xiaojun;Wu Zhenghui;Ye Linbai
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.529-536
    • /
    • 2005
  • Viral infection causes stress to the endoplasmic reticulum (ER). The response to endoplasmic reticulum stress, known as the unfolded protein response (UPR), is designed to eliminate misfolded proteins and allow the cell to recover. The role of hepatitis C virus (HCV) non-structural protein NS4B, a component of the HCV replicons that induce UPR, is incompletely understood. We demonstrate that HCV NS4B could induce activating transcription factor (ATF6) and inositol-requiring enzyme 1 (IRE1), to favor the HCV subreplicon and HCV viral replication. HCV NS4B activated the IRE1 pathway, as indicated by splicing of X box-binding protein (Xbp-1) mRNA. However, transcriptional activation of the XBP-1 target gene, EDEM (ER degradation-enhancing $\alpha-mannosidase-like$ protein, a protein degradation factor), was inhibited. These results imply that NS4B might induce UPR through ATF6 and IRE1-XBP1 pathways, but might also modify the outcome to benefit HCV or HCV subreplicon replication.

Roles of Endoplasmic Reticulum Stress in Immune Responses

  • So, Jae-Seon
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.705-716
    • /
    • 2018
  • The endoplasmic reticulum (ER) is a critical organelle for protein synthesis, folding and modification, and lipid synthesis and calcium storage. Dysregulation of ER functions leads to the accumulation of misfolded- or unfolded-protein in the ER lumen, and this triggers the unfolded protein response (UPR), which restores ER homeostasis. The UPR is characterized by three distinct downstream signaling pathways that promote cell survival or apoptosis depending on the stressor, the intensity and duration of ER stress, and the cell type. Mammalian cells express the UPR transducers IRE1, PERK, and ATF6, which control transcriptional and translational responses to ER stress. Direct links between ER stress and immune responses are also evident, but the mechanisms by which UPR signaling cascades are coordinated with immunity remain unclear. This review discusses recent investigations of the roles of ER stress in immune responses that lead to differentiation, maturation, and cytokine expression in immune cells. Further understanding of how ER stress contributes to the pathogenesis of immune disorders will facilitate the development of novel therapies that target UPR pathways.

Inhibitory Effects of Ethanol Extract of Rhodiola Sacra on Endoplasmic Reticulum Stress in Neuro-2A Cells (설치류 Neuro-2A 신경세포에서 홍경천 에탄올 추출물의 소포체 스트레스 억제효과)

  • Jo, Nam-Eun;Song, Young-soon
    • Journal of Digital Convergence
    • /
    • v.17 no.8
    • /
    • pp.265-270
    • /
    • 2019
  • Growing evidence suggests that mediating apoptotic cell death of ER stress plays an important role in pathological development of neurodegenerative diseases including Alzheimer's disease. The ethanol extract of Rodiola sacra (ERS) investigates whether ER stress protects neuroinvasive neuro-2A cells from homocysteine (Hcy) cell death and ER stress. In neuronal cells, Hcy markedly decreased the viability of the cells and induced the death of Annexin V-positive cells as confirmed by MTT assay. The Hcy cell viability and apoptotic loss pretreated with ERS were attenuated, and Hcy showed stress in the expression of C / EBP homologous protein, 78-kDa glucose regulatory protein and the junction of X-box binding protein-1 (xbp1) mRNA. ESR decreased Hcy-induced mRNA binding, GRP78 and CHOP cells induced Hcy-induced ER stress and apoptosis, and Western blotting revealed expression of heme oxygenase-1 and HO-1 enzyme activity Inhibition is indicative of therapeutic value for neurodegenerative diseases such as decreased cell death by hemin.

Effects of Endoplasmic Reticulum Stress Inhibitor Treatment during the Micromanipulation of Somatic Cell Nuclear Transfer in Porcine Oocytes

  • Park, Yeo-Reum;Park, Hye-Bin;Kim, Mi-Jeong;Jung, Bae-Dong;Lee, Seunghyung;Park, Choon-Keun;Cheong, Hee-Tae
    • Development and Reproduction
    • /
    • v.23 no.1
    • /
    • pp.43-54
    • /
    • 2019
  • We examined the effects of endoplasmic reticulum (ER) stress inhibitor treatment during the micromanipulation of porcine somatic cell nuclear transfer (SCNT) on the in vitro development of SCNT embryos. ER stress inhibitors such as salubrinal (200 nM) and tauroursodeoxycholic acid (TUDCA; $100{\mu}M$) were added to the micromanipulation medium and holding medium. The expression of X-box binding protein 1 (Xbp1), ER-stress-associated genes, and apoptotic genes in SCNT embryos was confirmed at the one-cell and blastocyst stages. Levels of Xbp1 splicing and expression of ER-stress-associated genes in SCNT embryos at the one-cell stage decreased significantly with TUDCA treatment (p<0.05). The expression of ER-stress-associated genes also decreased slightly with the addition of both salubrinal and TUDCA (Sal+TUD). The expression levels of caspase-3 and Bcl2-associated X protein (Bax) mRNA were also significantly lower in the TUDCA and Sal+TUD treatments (p<0.05). At the blastocyst stage, there were no differences in levels of Xbp1 splicing, and transcription of ER-stress-associated genes and apoptosis genes between control and treatment groups. However, the blastocyst formation rate (20.2%) and mean blastocyst cell number ($63.0{\pm}7.2$) were significantly higher (p<0.05) for embryos in the TUDCA treatment compared with those for control (12.6% and $41.7{\pm}3.1$, respectively). These results indicate that the addition of ER-stress inhibitors, especially TUDCA, during micromanipulation can inhibit cellular damage and enhance in vitro development of SCNT embryos by reducing stress levels in the ER.

Analysis of Endoplasmic Reticulum (ER) Stress Induced during Somatic Cell Nuclear Transfer (SCNT) Process in Porcine SCNT Embryos

  • Lee, Hwa-Yeon;Bae, Hyo-Kyung;Jung, Bae-Dong;Lee, Seunghyung;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Development and Reproduction
    • /
    • v.22 no.1
    • /
    • pp.73-83
    • /
    • 2018
  • This study investigates the endoplasmic reticulum (ER) stress and subsequent apoptosis in duced during somatic cell nuclear transfer (SCNT) process of porcine SCNT embryos. Porcine SCNT and in vitro fertilization (IVF) embryos were sampled at 3 h and 20 h after SCNT or IVF and at the blastocyst stage for mRNA extraction. The x-box binding protein 1 (Xbp1) mRNA and the expressions of ER stress-associated genes were confirmed by RT-PCR or RT-qPCR. Apoptotic gene expression was analyzed by RT-PCR. Before commencing SCNT, somatic cells treated with tunicamycin (TM), an ER stress inducer, confirmed the splicing of Xbp1 mRNA and increased expressions of ER stress-associated genes. In all the embryonic stages, the SCNT embryos, when compared with the IVF embryos, showed slightly increased expression of spliced Xbp1 (Xbp1s) mRNA and significantly increased expression of ER stress-associated genes (p<0.05). In all stages, apoptotic gene expression was slightly higher in the SCNT embryos, but not significantly different from that of the IVF embryos except for the Bax/Bcl2L1 ratio in the 1-cell stage (p<0.05). The result of this study indicates that excessive ER stress can be induced by the SCNT process, which induce apoptosis of SCNT embryos.

ER stress and unfolded protein response (UPR) signaling modulate GLP-1 receptor signaling in the pancreatic islets

  • Yurong Gao;Hanguk Ryu;Hyejin Lee;Young-Joon Kim;Ji-Hye Lee;Jaemin Lee
    • Molecules and Cells
    • /
    • v.47 no.1
    • /
    • pp.100004.1-100004.11
    • /
    • 2024
  • Insulin is essential for maintaining normoglycemia and is predominantly secreted in response to glucose stimulation by β-cells. Incretin hormones, such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide, also stimulate insulin secretion. However, as obesity and type 2 diabetes worsen, glucose-dependent insulinotropic polypeptide loses its insulinotropic efficacy, whereas GLP-1 receptor (GLP-1R) agonists continue to be effective owing to its signaling switch from Gs to Gq. Herein, we demonstrated that endoplasmic reticulum (ER) stress induced a transition from Gs to Gq in GLP-1R signaling in mouse islets. Intriguingly, chemical chaperones known to alleviate ER stress, such as 4-PBA and TUDCA, enforced GLP-1R's Gq utilization rather than reversing GLP-1R's signaling switch induced by ER stress or obese and diabetic conditions. In addition, the activation of X-box binding protein 1 (XBP1) or activating transcription factor 6 (ATF6), 2 key ER stress-associated signaling (unfolded protein response) factors, promoted Gs utilization in GLP-1R signaling, whereas Gq employment by ER stress was unaffected by XBP1 or ATF6 activation. Our study revealed that ER stress and its associated signaling events alter GLP-1R's signaling, which can be used in type 2 diabetes treatment.