Hepatitis C Virus Non-structural Protein NS4B Can Modulate an Unfolded Protein Response

  • Zheng Yi (State Key laboratory of virology, College of Life Sciences, Wuhan University) ;
  • Gao Bo (State Key laboratory of virology, College of Life Sciences, Wuhan University) ;
  • Ye Li (State Key laboratory of virology, College of Life Sciences, Wuhan University) ;
  • Kong Lingbao (State Key laboratory of virology, College of Life Sciences, Wuhan University) ;
  • Jing Wei (State Key laboratory of virology, College of Life Sciences, Wuhan University) ;
  • Yang Xiaojun (State Key laboratory of virology, College of Life Sciences, Wuhan University) ;
  • Wu Zhenghui (State Key laboratory of virology, College of Life Sciences, Wuhan University) ;
  • Ye Linbai (State Key laboratory of virology, College of Life Sciences, Wuhan University)
  • Published : 2005.12.01

Abstract

Viral infection causes stress to the endoplasmic reticulum (ER). The response to endoplasmic reticulum stress, known as the unfolded protein response (UPR), is designed to eliminate misfolded proteins and allow the cell to recover. The role of hepatitis C virus (HCV) non-structural protein NS4B, a component of the HCV replicons that induce UPR, is incompletely understood. We demonstrate that HCV NS4B could induce activating transcription factor (ATF6) and inositol-requiring enzyme 1 (IRE1), to favor the HCV subreplicon and HCV viral replication. HCV NS4B activated the IRE1 pathway, as indicated by splicing of X box-binding protein (Xbp-1) mRNA. However, transcriptional activation of the XBP-1 target gene, EDEM (ER degradation-enhancing $\alpha-mannosidase-like$ protein, a protein degradation factor), was inhibited. These results imply that NS4B might induce UPR through ATF6 and IRE1-XBP1 pathways, but might also modify the outcome to benefit HCV or HCV subreplicon replication.

Keywords

References

  1. Bartenschlager, R. and V. Lohmann, 2000. Replication of hepatitis C virus. J. Gen. Virol. 81, 1631-1648 https://doi.org/10.1099/0022-1317-81-7-1631
  2. Egger, D., B. Wolk, R. Gosert, L. Bianchi, H. E. Blum, D. Moradpour, and K. Bienz. 2002. Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J. Virol. 76, 5974-5984 https://doi.org/10.1128/JVI.76.12.5974-5984.2002
  3. Elazar, M., P. Liu, C.M. Rice, and J.M. Glenn. 2004. An N-terminal amphipathic helix in hepatitis C virus (HCV) NS4B mediates membrane association, correct localization of replication complex proteins, and HCV RNA replication. J Virol. 78, 11393-11400 https://doi.org/10.1128/JVI.78.20.11393-11400.2004
  4. Farci, P., A. Shimoda, A. Coiana, G.G. Diaz, Peddis, J.C. Melpolder, A. Strazzera, D.Y. Chien, S.J. Munoz, A. Balestrieri, R.H. Purcell, and H.J. Alter. 2000. The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies. Science 288, 339-342 https://doi.org/10.1126/science.288.5464.339
  5. Florese, R.H., M. Nagano-Fujii, Y. Iwanaga, R. Hidajat, and H. Hotta. 2002. Inhibition of protein synthesis by the nonstructural proteins NS4A and NS4B of hepatitis C virus. Virus Res. 90, 119-131 https://doi.org/10.1016/S0168-1702(02)00146-6
  6. Gosert, R., D. Egger, V. Lohmann, R. Bartenschlager, H. E. Blum, K. Bienz, and D. Moradpour. 2003. Identification of the hepatitis C virus RNA replication complex in huh-7 cells harboring subgenomic replicons. J. Virol. 77, 5487-5492 https://doi.org/10.1128/JVI.77.9.5487-5492.2003
  7. Hugle, T., F. Fehrmann, E. Bieck, M. Kohara, H.G. Krausslich, C.M. Rice, H.E. Blum, and D. Moradpour. 2001. The hepatitis C virus nonstructural protein 4B is an integral endoplasmic reticulum membrane protein. Virology 284, 70-81 https://doi.org/10.1006/viro.2001.0873
  8. Kato, J., N. Kato, H. Yoshida, S.K. Ono-Nita, Y. Shiratori, and M. Omata. 2002. Hepatitis C virus NS4A and NS4B proteins suppress translation in vivo. J. Med. Virol. 66, 187-199 https://doi.org/10.1002/jmv.2129
  9. Lee, A.S., N.N. Iwakoshi, and L.H. Glimcher. 2003. XBP1 regulates a subset of endoplasmic reticulum-resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23, 7448-7459 https://doi.org/10.1128/MCB.23.21.7448-7459.2003
  10. Lundin, M., M. Monne, A. Widell, G. Von Heijne, and M.A. Persson. 2003. Topology of the membrane-associated hepatitis C virus protein NS4B. J. Virol. 77, 5428–5438
  11. Maio M., S. Coral, E. Fratta, M. Altomonte, and L. Sigalotti. 2003. Epigenetic targets for immune intervention in human malignancies. Oncogene 22, 6484-6488 https://doi.org/10.1038/sj.onc.1206956
  12. Park, J.S., J.M. Yang, and M.K. Min. 2000. Hepatitis C virus nonstructural protein NS4B transforms NIH3T3 cells in cooperation with the Ha-ras oncogene. Biochem. Biophys. Res. Commun. 267, 581-587 https://doi.org/10.1006/bbrc.1999.1999
  13. Piccininni, S., A. Varaklioti, M. Nardelli, B. Dave, K.D. Raney, and J.E. McCarthy. 2002. Modulation of the hepatitis C virus RNAdependent RNA polymerase activity by the non-structural (NS) 3 helicase and the NS4B membrane protein. J. Biol. Chem. 277, 45670-45679 https://doi.org/10.1074/jbc.M204124200
  14. Reimold, A.M., A. Etkin, I. Clauss, A. Perkins, D.S. Frand, J. Zhang, H.F. Horton, A. Scott, S.H. Orkin, and M.C. Byrme. 2000. An essential role in liver development for transcription factor XBP-1. Genes Dev. 14, 152-157
  15. Reimold, A.M., N.N. Iwakoshi, J. Manis, P. Vallabhajosyula, E. Szomolanyi-Tsuda, E.M. Gravallese, D. Friend, M.J. Grusby, F. Alt, and L.H. Glimcher. 2001. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300-307 https://doi.org/10.1038/35085509
  16. Rosenberg, S., 2001. Recent advances in the molecular biology of hepatitis C virus. J. Mol. Biol. 313, 451-464 https://doi.org/10.1006/jmbi.2001.5055
  17. Rutkowski, D.T. and R.J. Kaufma. 2004. A trip to the ER: coping with stress. Trends Cell Biol. 14(1), 20-28 https://doi.org/10.1016/j.tcb.2003.11.001
  18. Shuda, M., N. Kondoh, N. Imazeki, K. Tanaka, T. Okada, K. Mori, A. Hada, M. Arai, T. Wakatsuki, O. Matsubara, N. Yamamoto, and M. Yamamoto. 2003. Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis J. Hepatol. 38(5), 605-614 https://doi.org/10.1016/S0168-8278(03)00029-1
  19. Tardif, K.D., K. Mori, and A. Siddiqui. 2002. Hepatitis C virus subgenomic replicons induce endoplasmic reticulum stress activating an intracellular signaling pathway. J. Virol. 76, 7453-7459 https://doi.org/10.1128/JVI.76.15.7453-7459.2002
  20. Tardif, K.D., K. Mori, R. Kaufman, and A. Siddiqui. 2004. Hepatitis C virus suppresses the IRE1-XBP1 pathway of the unfolded protein response. J. Biol. Chem. 279, 17158-17164 https://doi.org/10.1074/jbc.M312144200
  21. Tong, W.Y., M. Nagano-Fujii, R. Hidajat, L. Deng, Y. Takigawa, and H. Hotta. 2002. Physical interaction between hepatitis C virus NS4B protein and CREB-RP/ATF6 beta. Biochem, Biophys.Res. Commun. 299, 366-372 https://doi.org/10.1016/S0006-291X(02)02638-4
  22. Weinmann, A.S., M.B. Stephanie, T. Zhang, M.Q. Zhang, and P.J. Farnham. 2001. Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol. Cell. Biol. 21, 6820-6832 https://doi.org/10.1128/MCB.21.20.6820-6832.2001
  23. Wells, J. and P.J. Farnham. 2002. Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation. Methods. 26, 48-56 https://doi.org/10.1016/S1046-2023(02)00007-5