• Title/Summary/Keyword: X chromosome

Search Result 325, Processing Time 0.028 seconds

X-Chromosome Inactivation: A Complex Circuits regulated by Non-coding RNAs and Pluripotent Factors

  • Hwang, Jae Yeon;Lee, Chang-Kyu
    • Reproductive and Developmental Biology
    • /
    • v.41 no.2
    • /
    • pp.33-40
    • /
    • 2017
  • X-chromosome inactivation is one of the most complex events observed in early embryo developments. The epigenetic changes occurred in female X-chromosome is essential to compensate dosages of X-linked genes between males and females. Because of the relevance of the epigenetic process to the normal embryo developments and stem cell studies, X-chromosome inactivation has been focused intensively for last 10 years. Initiation and regulation of the process is managed by diverse factors. Especially, proteins and non-coding RNAs encoded in X-chromosome inactivation center, and a couple of transcription factors have been reported to regulate the event. In this review, we introduce the reported factors, and how they regulate epigenetic inactivation of X-chromosomes.

Reanalysis of Ohno's hypothesis on conservation of the size of the X chromosome in mammals

  • Kim, Hyeongmin;Lee, Taeheon;Sung, Samsun;Lee, Changkyu;Kim, Heebal
    • Animal cells and systems
    • /
    • v.16 no.6
    • /
    • pp.438-446
    • /
    • 2012
  • In 1964, Susumu Ohno, an evolutionary biologist, hypothesized that the size of X chromosome was conserved in mammalian evolution, and that this was based on chromosomal length. Today, unlike Ohno's method which was based on estimated lengths, we know the exact lengths of some mammalian sequences. The aim of this study was to reanalyze Ohno's hypothesis. In mammalian species, variation in the length of the X chromosome is greater than in the autosomes; however, this variation is not statistically significant. This means that differences in chromosomal length occur equally in the X chromosome and in the autosomes. Interspersed nuclear elements and genetic rearrangements were analyzed to maintain the same variance between the length of the X chromosome and the autosomes. The X chromosome contained fewer short interspersed elements (SINEs) (0.90 on average); however, it did contain more long interspersed elements (LINEs) than did autosomes (1.56 on average). An overall correlation of LINEs and SINEs with genetic rearrangements was observed; however, synteny breaks were more closely associated with LINEs in the autosomes, and with SINEs in the X chromosome. These results suggest that the chromosome-specific activities of LINEs and SINEs result in the same variance between the lengths of the X chromosome and the autosomes. This is based on the function of interspersed nuclear elements, such as LINEs, which can inactivate the X chromosome and the reliance of non-autonomous SINEs on LINEs for transposition.

Characterization of X-linked RNA Transcripts in Matured Bovine Spermatozoa

  • Jeon, Byeong-Gyun;Kumar, B. Mohana;Rho, Gyu-Jin
    • Reproductive and Developmental Biology
    • /
    • v.35 no.3
    • /
    • pp.209-214
    • /
    • 2011
  • Although the function and utility of RNA transcripts derived from matured spermatozoa remains unclear, they might play important roles in the establishment of a paternal genome and subsequently embryo development. Herein, we investigated the expression of X-chromosome linked RNA transcripts in matured bovine spermatozoa. The total RNA was extracted from the matured spermatozoa, and then converted to cDNA. Autosomal genes (ACT-${\beta}$ and H-2A) and X-chromosome linked genes (ANT3, HPRT, MeCP2, RPS4X, XIAP, XIST and ZFX) were analyzed for the characterization of X-chromosome linked RNA transcripts and compared to female fibroblasts by RT-PCR. The transcripts of autosomal genes (ACT-${\beta}$ and H2A) and X-chromosome linked genes (ANT3, HPRT, MeCP2, RPS4X and ZFX) were not detected in spermatozoa. However, XIAP (X-linked inhibitor of apoptosis protein) and XIST (X-chromosome inactive-specific transcript, a kind of paternal imprinted gene) transcripts were detected in spermatozoa, and relative levels of XIAP and XIST transcripts were similar and 0.5-fold lower when compared to female fibroblasts, respectively. Based on the findings, it is summarized that the presence of RNA transcripts of XIAP and XIST in the isolated spermatozoa may imply their role in inhibition of apoptosis and induction of X-chromosome inactivation in embryo development.

A Cytogenetic Study of Amenorrhea (무월경 환자의 세포유전학적인 연구)

  • Lee, Kyung-Soon;Han, Jung-Ho;Moon, Shin-Yong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.3
    • /
    • pp.467-474
    • /
    • 1999
  • Objectives: Cytogenetic investigations were carried out on 770 women with primary (n=560) and secondary amenorrhea (n=210) to determine the frequency of chromosomal or genetic causes of amenorrhea. Materials and Methods: In 770 women with primary amenorrhea (n=560) and secondary amenorrhea (n=210), chromosomal analysis were performed. Results: 1) The most prevalent age group is 16-20 years of age group with primary amenorrhea and 26-30 years of age group with secondary amenorrhea. 2) Out of 560 cases of primary amenorrhea, 343 cases (61.3%) had the normal chromosome constitution and 217 cases (38.7%) had the abnormal chromosome constitution including 46,XY. 3) In 217 cases of abnormal chromosome of primary amenorrhea, 57 cases (26.3%) had 45,X and 34 cases (15.8%) had the 46,XY, 24 cases (11.0%) had 45,X/46,X,i (Xq), 23 cases (10.6%) had 45,X/46,X,+mar and 14 cases (6.6%) had 45,X/46,XY. 4) Out of 210 cases of secondary amenorrhea, 181 cases (86.2%) had the normal chromosome constitution and 29 cases (13.8%) had the abnormal chromosome. 5) In 29 cases of abnormal chromosome of secondary amenorrhea, 7 cases (24.1%) had 45,X/46, X,i (Xq), 4 cases (13.8%) had 45,X/46,XX. Conclusion: High percentage of chromosomal abnormalities was diagnosed in primary amenorrhea and most of them were sex chromosome anomalies. In secondary amenorrhea, the prevalence was lower than primary amenorrhea, so a preselection of patients with secondary amenorrhea for cytogenetic investigations seems to be necessary.

  • PDF

Change of X Chromosome Status during Development and Reprogramming

  • Jung, Yong-Wook;Park, In-Hyun
    • Development and Reproduction
    • /
    • v.15 no.3
    • /
    • pp.187-195
    • /
    • 2011
  • X chromosome inactivation (XCI) is a process that enables mammalian females to ensure the dosage compensation for X-linked genes. Investigating the mechanism of XCI might provide deeper understandings of chromosomal silencing, epigenetic regulation of gene expressions, and even the course of evolution. Studies on mammalian XCI conducted with mice have revealed many fundamental findings on XCI. However, difference of murine and human XCI necessitates the further investigation in human XCI. Recent success in reprogramming of differentiated cells into pluripotent stem cells showed the reversibility of XCI in vitro, X chromosome reactivation (XCR), which provides another tool to study the change in X chromosome status. This review summarizes the current knowledge of XCI during early embryonic development and describes recent achievements in studies of XCI in reprogramming process.

Chromosome Number Evolution in Cirsium Mill. and Carddus L. (Asteraceae)

  • Kang, Seong-Yeon;Jang, Tae-Soo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.25-25
    • /
    • 2019
  • Chromosome numbers and karyotypes in flowering plants have been considered to be prominent features in taxonomic and evolutionary context. Despite the increasing numbers of cytological studies in Asteraceae, karyotype analysis of Cirsium Mill. and Carddus L. in Korean population have not been performed carefully. In this study, the chromosome numbers and karyotype analysis of all eight species of the genus Cirsium Mill. and one species of Carddus L. were analyzed. While the chromosome number in Carduus crispus L. was diploid (2n = 2x = 18 or 18+2Bs) with x = 9 as the base chromosome number, all seven species of Cirsium were diploid with x = 17 except for Cirsium lineare (Thunb.) Sch. Bip. (x = 14). The chromosome number in C. pendulum Fisch. ex DC. presented 2n = 2x = 34 from two populations and C. lineare exhibited 2n = 2x = 28 from one population. Aneuploidy was occasionally found in C. japonicum Fisch. ex DC. var. spinossinum Kitam. (2n = 2x = 34, 35, 36), C. rhinoceros (H. $L{\acute{e}}v.$ & Vaniot) Nakai (2n = 2x = 32, 34), C. setidens (Dunn) Nakai (2n = 2x = 30, 31, 32) and C. vlassovianum Fisch. ex DC. (2n = 2x = 31, 32). While Cirsium japonicum Fisch. ex DC. var. japonicum possessed several B-chromosomes (2n = 2x = 34, 35, 36), polyploidy was only encountered in Cirsium nipponicum (Maxim.) Makino. (2n = 4x = 68) from two populations in Ulleung Island. The present cytological data might be contributed to the taxonomic and evolutionary studies in the genus Cirsium.

  • PDF

Studies on X-Y Chromosome Dissociation Induced by Environmental Mutagens in Mouse (환경성 돌연변이원에 의한 Mouse의 X-Y 염색체 조기분리에 관한 연구)

  • 윤경희;이원호
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.599-605
    • /
    • 1998
  • The purpose of this work was to examine whether X-Y chromosome dissociation in the primary spermatocytes of mice could be used as an in vivo short-term assaying system that detect environmental mutagens. Four alkylating agents(EMS, MMS, MMC and MNNG) which were known as strong mutagens were administered to BALB/c male mice 3-4 months old. In the control group, the mean frequencies of previously dissociated X and Y chromosomes and autosomes were 7.17% and 2.12%, respectively. Compared to the control group, mutagen-treated groups have no significant differences in dissociation rate of autosomes, while these poops were about 1.2-2.5 times higher in the frequencies of X-Y dissociation. Generally, X-Y dissociation frequency increased consistently with the concentration of mutagens whereas the tendency of autosome dissociation frequency was variable among several mutagens. These results suggest that X-Y dissociation in the primary spermatocytes of mice is applicable as an vivo short-term assaying system for environmental mutagens. There were significantly distinct increase in dissociation of X-Y chromosome in both the hybrid and parents but the X-Y previous dissociation of hybrid appeared higher frequency than BALB /c and wild mice. These results indicate that the factor related to binding X-Y chromosome is specific to strains.

  • PDF

Second locus for late-onset familial Amyotrophic Lateral Sclerosis (가족성 근위축성측삭경화증을 유발시키는 두 번째 유전자 위치)

  • 홍성출
    • Journal of Life Science
    • /
    • v.11 no.3
    • /
    • pp.279-283
    • /
    • 2001
  • Amyotrophic lateral sclerosis(ALS) is a progressive neurologic disorder resulting from the degeneration of upper and lower motor neurons, and is inherited in 10% of cases. About 20% of familial ALS, clinically indistinguishable from sporadic ALS, is caused by mutations of Cu/Zn superoxide dismutase on chromosome 21q22.21 inherited as an autosomal dominant trait. We now report a new locus in the non-SOD1 dominantly inherited ALS. We screened a large ALS family with 11 affected individuals and one obligate gene carrier with genome-wide ABI polymorphic markers using the ABI 377 automated system. No evidence of linkage was obtained with the autosomal markers. We next screened this family with X chromosome markers as there was no evidence of male-to-male tran-smission of the disease. Linkage was established with several X chromosome markers with a lod score up to 3.8; almost the maximum possible score in this family. Our finding imply that a gene for the dominant expression of a neuronal degeneration is coded on X chromosome and raise the question of the role of X-linked genes that escape inactivation in this pathogenesis. More importantly, our finding that a gene causing ALS is localized on X-chromosome has direct investigational relevance to sporadic ALS, where epidemiological studies show male gender predominance(1.3:1) and earlier onset in men by 5-10 years.

  • PDF

Study on the Somatic Chromosome Numbers of Korean Aster L. and Its Allied Taxa (한국산 개미취속 및 근연 분류군의 체세포염색체수에 관한 연구)

  • 정규영
    • Korean Journal of Plant Resources
    • /
    • v.10 no.4
    • /
    • pp.292-299
    • /
    • 1997
  • The somatic chromosome numbers among the various taxonomic characters about 17 taxa in Korean Aster and its allied taxa were investigated to review accurate scientific name and taxonomic rank. The somatic chromosome numbers of the treated taxa were invariable in same taxa, but variable among different taxa. The treated taxa were divided into two types by basic chromosome numbers, one type was x=9, the other x=8 and x=9 type was subdivided by polyploidy. The somatic chromosome numbers of Aster altaicus var. uchiymae, A. hyatae, Kalimeris chejuensis were reported firstly in this study, and based upon somatic chromosome numbers and leaf morphology, the plants, idenified as Aster pinnatifidus in Korea was considered variant of Kalimeris incisa.

  • PDF

Characterization of a prenatally diagnosed de novo der(X)t(X;Y)(q27;q11.23) of fetus

  • Park, Sang Hee;Shim, Sung Han;Jung, Yong Wook;Kim, Da Hee;Kang, Su Jin;Park, Sun Ok;Cha, Dong Hyun
    • Journal of Genetic Medicine
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2014
  • A 31-year-old woman, who was pregnant with twins, underwent chorionic villus sampling because of increased nuchal translucency in one of the fetuses. Cytogenetic analysis showed a normal karyotype in the fetus with increased nuchal translucency. However, the other fetus, with normal nuchal translucency, had a derivative X chromosome (der(X)). For further analysis, fluorescence in situ hybridization (FISH) and additional molecular studies including fragile X analysis were performed. FISH analysis confirmed that the Y chromosome was the origin of extra segment of the der(X). The X-chromosome breakpoint was determined to be at Xq27 by FMR1 CGG repeat analysis, and the Y-chromosome breakpoint was determined to be at Yq11.23 by the Y chromosome microdeletion study. To predict the fetal outcome, the X-inactivation pattern was examined, and it revealed non-random X inactivation of the der(X). To the best of our knowledge, the identification of an unbalanced Xq;Yq translocation at prenatal diagnosis has never been reported. This study was performed to identify precise breakpoints and the X-inactivation pattern as well as to provide the parents with appropriate genetic counseling.