• 제목/요약/키워드: Wright-Bessel function

검색결과 17건 처리시간 0.021초

FRACTIONAL INTEGRATION AND DIFFERENTIATION OF THE (p, q)-EXTENDED BESSEL FUNCTION

  • Choi, Junesang;Parmar, Rakesh K.
    • 대한수학회보
    • /
    • 제55권2호
    • /
    • pp.599-610
    • /
    • 2018
  • We aim to present some formulas for Saigo hypergeometric fractional integral and differential operators involving (p, q)-extended Bessel function $J_{{\nu},p,q}(z)$, which are expressed in terms of Hadamard product of the (p, q)-extended Gauss hypergeometric function and the Fox-Wright function $_p{\Psi}_q(z)$. A number of interesting special cases of our main results are also considered. Further, it is emphasized that the results presented here, which are seemingly complicated series, can reveal their involved properties via those of the two known functions in their respective Hadamard product.

CERTAIN UNIFIED INTEGRALS INVOLVING PRODUCT OF GENERALIZED k-BESSEL FUNCTION AND GENERAL CLASS OF POLYNOMIALS

  • Menaria, N.;Parmar, R.K.;Purohit, S.D.;Nisar, K.S.
    • 호남수학학술지
    • /
    • 제39권3호
    • /
    • pp.349-361
    • /
    • 2017
  • By means of the Oberhettinger integral, certain generalized integral formulae involving product of generalized k-Bessel function $w^{{\gamma},{\alpha}}_{k,v,b,c}(z)$ and general class of polynomials $S^m_n[x]$ are derived, the results of which are expressed in terms of the generalized Wright hypergeometric functions. Several new results are also obtained from the integrals presented in this paper.

CERTAIN UNIFIED INTEGRALS INVOLVING A PRODUCT OF BESSEL FUNCTIONS OF THE FIRST KIND

  • Choi, Junesang;Agarwal, Praveen
    • 호남수학학술지
    • /
    • 제35권4호
    • /
    • pp.667-677
    • /
    • 2013
  • A remarkably large number of integrals involving a product of certain combinations of Bessel functions of several kinds as well as Bessel functions, themselves, have been investigated by many authors. Motivated the works of both Garg and Mittal and Ali, very recently, Choi and Agarwal gave two interesting unified integrals involving the Bessel function of the first kind $J_{\nu}(z)$. In the present sequel to the aforementioned investigations and some of the earlier works listed in the reference, we present two generalized integral formulas involving a product of Bessel functions of the first kind, which are expressed in terms of the generalized Lauricella series due to Srivastava and Daoust. Some interesting special cases and (potential) usefulness of our main results are also considered and remarked, respectively.

FRACTIONAL INTEGRATION AND DIFFERENTIATION OF THE (p, q)-EXTENDED MODIFIED BESSEL FUNCTION OF THE SECOND KIND AND INTEGRAL TRANSFORMS

  • Purnima Chopra;Mamta Gupta;Kanak Modi
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.755-772
    • /
    • 2023
  • Our aim is to establish certain image formulas of the (p, q)-extended modified Bessel function of the second kind Mν,p,q(z) by employing the Marichev-Saigo-Maeda fractional calculus (integral and differential) operators including their composition formulas and using certain integral transforms involving (p, q)-extended modified Bessel function of the second kind Mν,p,q(z). Corresponding assertions for the Saigo's, Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential operators are deduced. All the results are represented in terms of the Hadamard product of the (p, q)-extended modified Bessel function of the second kind Mν,p,q(z) and Fox-Wright function rΨs(z).

CERTAIN FRACTIONAL INTEGRALS AND IMAGE FORMULAS OF GENERALIZED k-BESSEL FUNCTION

  • Agarwal, Praveen;Chand, Mehar;Choi, Junesang;Singh, Gurmej
    • 대한수학회논문집
    • /
    • 제33권2호
    • /
    • pp.423-436
    • /
    • 2018
  • We aim to establish certain Saigo hypergeometric fractional integral formulas for a finite product of the generalized k-Bessel functions, which are also used to present image formulas of several integral transforms including beta transform, Laplace transform, and Whittaker transform. The results presented here are potentially useful, and, being very general, can yield a large number of special cases, only two of which are explicitly demonstrated.

A STUDY OF NEW CLASS OF INTEGRALS ASSOCIATED WITH GENERALIZED STRUVE FUNCTION AND POLYNOMIALS

  • Haq, Sirazul;Khan, Abdul Hakim;Nisar, Kottakkaran Sooppy
    • 대한수학회논문집
    • /
    • 제34권1호
    • /
    • pp.169-183
    • /
    • 2019
  • The main aim of this paper is to establish a new class of integrals involving the generalized Galu$Galu{\grave{e}}$-type Struve function with the different type of polynomials such as Jacobi, Legendre, and Hermite. Also, we derive the integral formula involving Legendre, Wright generalized Bessel and generalized Hypergeometric functions. The results obtained here are general in nature and can deduce many known and new integral formulas involving the various type of polynomials.