• Title/Summary/Keyword: Wound regeneration

Search Result 221, Processing Time 0.029 seconds

Risk Factors for Wound Dehiscence after Guided Bone Regeneration in Dental Implant Surgery

  • Kim, Young-Kyun;Yun, Pil-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.36 no.3
    • /
    • pp.116-123
    • /
    • 2014
  • Purpose: The purpose of this study was to evaluate risks for wound dehiscence after guided bone regeneration (GBR) in dental implant surgery. Methods: Patients who received dental implant therapy with GBR procedure at Seoul National University Bundang Hospital (Seongnam, Korea) from June 2004 to May 2007 were included. The clinical outcome of interest was complications related to dental implant surgery. The factors influencing wound dehiscence, classified into patient-related factors, surgery-related factors and material-related factors, were evaluated. Results: One hundred and fifteen cases (202 implants) were included in this study. Wound dehiscence (19.1%) was considered a major complication. The risk of wound dehiscence was higher in males than in females (odds ratio=4.279, P =0.014). In the main graft, the allogenic group had the lowest risk of wound dehiscence (odds ratio=0.106, P =0.006). Though the external connection group had a higher risk of wound dehiscence than the internal connection group (odds ratio=2.381), the difference was not significant (P =0.100). Conclusion: In this study, male gender and main graft have the highest risk of wound dehiscence. To reduce wound dehiscence after GBR, instructions on postoperative care with supplementary procedure for the protection of the wound dehiscence is recommended, especially to male patients. A main graft with a gel base can reduce the risk of wound dehiscence.

Distance of insertion points in a mattress suture from the wound margin for ideal primary closure in alveolar mucosa: an in vitro experimental study

  • Lee, Won-Ho;Kuchler, Ulrike;Cha, Jae-Kook;Stavropoulos, Andreas;Lee, Jung-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.3
    • /
    • pp.189-198
    • /
    • 2021
  • Purpose: This study was conducted to determine how the distance of the near insertion points in a vertical mattress suture from the wound margin influences the pattern of primary closure in an in vitro experimental model. Methods: Pairs of 180 porcine gingival and alveolar mucosa samples were harvested from 90 pig jaws and fixed to a specially designed model. A vertical mattress suture was performed with the near insertion point at 3 different distances from the wound margin (1-, 3-, and 5-mm) on both the gingival and mucosal samples (6 groups; n=30 for each group). The margin discrepancy and the presence of epithelium between the wound margins were measured on histologic slides. Results: The margin discrepancy decreased significantly as the near insertion point became closer to the wound margin both in mucosal tissue (0.241±0.169 mm, 0.945±0.497 mm, and 1.306±0.773 mm for the 1-, 3-, and 5-mm groups, respectively) and in gingival tissue (0.373±0.304 mm, 0.698±0.431 mm, and 0.713±0.691 mm, respectively). The frequency of complications of wound margin adaptation reduced as the distance of the near insertion point from the wound margin decreased both in the mucosal and gingival tissues. Conclusions: Placing the near insertion point close to the wound margin enhances the precision of wound margin approximation/adaptation using a vertical mattress suture.

The effect of Korean Red Ginseng on full-thickness skin wound healing in rats

  • Park, Ki-Soo;Park, Dae-Hwan
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.226-235
    • /
    • 2019
  • Background: Panax ginseng is regarded as one of the best compounds for promoting health, and it has been used traditionally as a medicinal herb. Recently, Korean Red Ginseng (RG) has been shown to protect skin from aging and wrinkling; it can also relieve atopic dermatitis and allergy symptoms. This study aimed to evaluate RG's effects on the regeneration of the full-thickness skin wounds in rat. Methods: Full-thickness skin wounds were generated in rats, and then RG was administered either orally or topically. The wound-healing effects of RG were investigated by assessing wound size, mRNA expression patterns of genes related to wound healing, histological staining, and measurements of lipid, moisture, and elasticity in skin tissues. Results: The wound size was smaller, and tissue regeneration rate was faster in the RG-treated group than that in the control group on days 15 and 20 after initiating treatment. On postoperative day 20, skin lipid and moisture content had increased significantly in the RG-treated group. Significant increases in the gene expression levels of transforming growth $factor-{\beta}1$ and vascular endothelial growth factor were found in the RG group during the early stages of wound healing. Matrix metalloproteinase-1 and matrix metalloproteinase-9 showed significant increases in gene expression levels on day 20. Conclusion: The results suggested that RG may promote healing of full-thickness skin wounds in rats. They also provided basic insights into the effects of RG on skin regeneration, supporting its use as a dressing material for wound treatment and its development as a functional food.

Wound-Induced Hair Follicle Neogenesis as a Promising Approach for Hair Regeneration

  • Chaeryeong Lim;Jooyoung Lim;Sekyu Choi
    • Molecules and Cells
    • /
    • v.46 no.10
    • /
    • pp.573-578
    • /
    • 2023
  • The mammalian skin contains hair follicles, which are epidermal appendages that undergo periodic cycles and exhibit mini-organ features, such as discrete stem cell compartments and different cellular components. Wound-induced hair follicle neogenesis (WIHN) is the remarkable ability to regenerate hair follicles after large-scale wounding and occurs in several adult mammals. WIHN is comparable to embryonic hair follicle development in its processes. Researchers are beginning to identify the stem cells that, in response to wounding, develop into neogenic hair follicles, as well as to understand the functions of immune cells, mesenchymal cells, and several signaling pathways that are essential for this process. WIHN represents a promising therapeutic approach to the reprogramming of cellular states for promoting hair follicle regeneration and preventing scar formation. In the scope of this review, we investigate the contribution of several cell types and molecular mechanisms to WIHN.

Intralesional Injection of Autologous Platelet-Rich Plasma as an Effective Regeneration Therapy: A Case Report of Chronic Wagner Grade 2 Diabetic Foot Ulcer (증례 보고: 병변 내 자가 혈소판풍부혈장 주사로 효과적으로 재생된 만성화된 Wagner Grade 2 당뇨발 궤양 1예)

  • Moon Hee, Kim
    • Journal of Korean Foot and Ankle Society
    • /
    • v.26 no.4
    • /
    • pp.187-191
    • /
    • 2022
  • The author experienced a case of autologous platelet-rich plasma (PRP) affecting the recovery of a chronic neuropathic diabetic foot ulcer combined with infection. A 65-year-aged male with uncontrolled diabetes presented with a Wagner grade 2 diabetic foot ulcer on his left forefoot of more than 2 weeks duration. Osteomyelitis, gangrene, and ischemia requiring acute intervention were absent. Although infection was controlled to a moderate degree, wound healing was unsatisfactory following surgical debridement and simple dressing. Therefore, intralesional autologous PRP injection was performed 5 times as an adjuvant regeneration therapy, and the recalcitrant ulcer healed in 3 months. Intralesional PRP injections are worthwhile as they promote wound regeneration, are evidence-based, safe, and can be easily performed in ambulatory care facilities.

Effects of βig-h3/Chitosan Dressing on Dermal Fibroblast and Wound Healing (βig-h3포함 키토산 상처 도포제의 섬유아세포 증식 및 상처치유 개선 능 평가)

  • Cho, Ae-Ri;Choi, Hee-Sun
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.1
    • /
    • pp.51-54
    • /
    • 2009
  • ${\beta}ig$-h3, is a TGF-${\beta}$-induced gene product, extracellular matrix protein with 68 kDa MW(683 amino acids) and has been known for its possible roles in cell adhesion, spreading, migration and proliferation. To minimize a proteolytic degradation of ${\beta}ig$-h3, ${\beta}ig$-h3 incorporated chitosan sponge was prepared and its effects on fibroblast adhesion and migration were investigated. And its wound healing efficacy was evaluated in deep 2nd degree burn rabbit ear wound model. ${\beta}ig$-h3 enhanced fibroblast adhesion and proliferation. In histological observation, a significant over-proliferation of epidermal regeneration was observed in ${\beta}ig$-h3/chitosan dressing applied wound while epidermal regeneration was not proceeded yet in chitosan only treated wound. ${\beta}ig$-h3/sponge dressing could enhance epidermal regeneration.

Enhancing Dermal Matrix Regeneration and Biomechanical Properties of $2^{nd}$ Degree-Burn Wounds by EGF-Impregnated Collagen Sponge Dressing

  • Cho Lee Ae-Ri
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1311-1316
    • /
    • 2005
  • To better define the relationship between dermal regeneration and wound contraction and scar formation, the effects of epidermal growth factor (EGF) loaded in collagen sponge matrix on the fibroblast cell proliferation rate and the dermal mechanical strength were investigated. Collagen sponges with acid-soluble fraction of pig skin were prepared and incorporated with EGF at 0, 4, and 8 $\mu$g/1.7 $cm^{2}$. Dermal fibroblasts were cultured to 80$\%$ confluence using DMEM, treated with the samples submerged, and the cell viability was estimated using MTT assay. A deep, $2^{nd}$ degree- burn of diameter 1 cm was prepared on the rabbit ear and the tested dressings were applied twice during the 15-day, post burn period. The processes of re-epithelialization and dermal regeneration were investigated until the complete wound closure day and histological analysis was performed with H-E staining. EGF increased the fibroblast cell proliferation rate. The histology showed well developed, weave-like collagen bundles and fibroblasts in EGF-treated wounds while open wounds showed irregular collagen bundles and impaired fibroblast growth. The breaking strength (944.1 $\pm$ 35.6 vs. 411.5 $\pm$ 57.0 Fmax, $gmm^{-2}$) and skin resilience (11.3 $\pm$ 1.4 vs. 6.5 $\pm$ 0.6 mJ/$mm^{2}$) were significantly increased with EGF­treated wounds as compared with open wounds, suggesting that EGF enhanced the dermal matrix formation and improved the wound mechanical strength. In conclusion, EGF-improved dermal matrix formation is related with a lower wound contraction rate. The impaired dermal regeneration observed in the open wounds could contribute to the formation of wound contraction and scar tissue development. An extraneous supply of EGF in the collagen dressing on deep, $2^{nd}$ degree-burns enhanced the dermal matrix formation.

Development of Hair Keratin Protein to Accelerate Oral Mucosal Regeneration

  • So-Yeon Kim
    • Journal of dental hygiene science
    • /
    • v.23 no.4
    • /
    • pp.369-377
    • /
    • 2023
  • Background: In this study, we investigated the potential use of keratin for oral tissue regeneration. Keratin is well-known for its effectiveness in skin regeneration by promoting keratinization and enhancing the elasticity and activity of fibroblasts. Because of its structural stability, high storability, biocompatibility, and safety in humans, existing research has predominantly focused on its role in skin wound healing. Herein, we propose using keratin proteins as biocompatible materials for dental applications. Methods: To assess the suitability of alpha-keratin protein as a substrate for cell culture, keratin was extracted from human hair via PEGylation. Viabilities of primary human gingival fibroblasts (HGFs) and human oral keratinocytes (HOKs) were assessed. Fluorescence immunostaining and migration assays were conducted using a fluorescence microscope and confocal laser scanning microscope. Wound healing and migration assays were performed using automated software to analyze the experimental readout and gap closure rate. Results: We confirmed the extraction of alpha-keratin and formation of the PEG-g-keratin complex. Treatment of HGFs with keratin protein at a concentration of 5 mg/ml promoted proliferation and maintained cell viability in the test group compared to the control group. HOKs treated with 5 mg/ml keratin exhibited a slight decrease in cell proliferation and activity after 48 hours compared to the untreated group, followed by an increase after 72 hours. Wound healing and migration assays revealed rapid closure of the area covered by HOKs over time following keratin treatment. Additionally, HOKs exhibited changes in cell morphology and increased the expression of the mesenchymal marker vimentin. Conclusion: Our study demonstrated the potential of hair keratin for soft tissue regeneration, with potential future applications in clinical settings for wound healing.

Accelerated Wound Healing by ]Recombinant Human Basic Fibroblast Growth Factor in Healing-impaired Animal Models

  • Kang, Soo-Hyung;Oh, Tae-Young;Cho, Hyun;Ahn, Byoung-Ok;Kim,Won-Bae
    • Biomolecules & Therapeutics
    • /
    • v.7 no.1
    • /
    • pp.7-13
    • /
    • 1999
  • The stimulatory effect of recombinant human basic fibroblast growth factor (bFGF) on wound healing was evaluated in healing-impaired animal models. Full-thickness wounds were made in prednisolone-treated mice, streptozotocin (STZ)-induced diabetic rats and mitomycin C (MMC)-treated rats. Saline or bFGF at a dose of 1, 5, or $25\mu\textrm{g}$ per wound was applied to the open wound once a day for three to five days. The degree of wound healing was assessed using wound size and histological parameters such as degree of epidermal and dermal regeneration. Local application of bFGF accelerated wound closure significantly in a dose-dependent manner in all healing-impaired wounds (p<0.05). The wound healing effect of bFGF was further confirmed by histological examination in MMC-treated rats. Epidermal and dermal regeneration were enhanced in bFGF-treated wounds with a dose-related response. Dermal regeneration parameters such as collagen matrix formation and angiogenesis were significantly increased in $5\mu\textrm{g}$, or $\25mu\textrm{g}$ of bFGF-treated wounds when compared to saline-treated wounds (p<0.05). pectin immunostaining on day 8 for vascular endothelium showed an increased number of neovessels in bFGF-treated wounds. These results suggest that topical application of bFGF has beneficial effects on wound healing by angiogenesis and granulation tissue formation in healing-impaired wounds.

  • PDF

Regeneration Effects of Lespedeza cuneata Ethanol Extract on Experimental Open Wound in Rat (흰쥐의 외과적 창상에 대한 야관문 에탄올 추출물의 피부재생 효과)

  • Kim, Dae-Ik;Kim, Hye-Jeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.4
    • /
    • pp.516-521
    • /
    • 2014
  • The purpose of this study was to examine the skin regeneration ability of Lespedeza cuneata extract (LC) as well as verify its wound healing effects on an open wound in rats. Rats were divided into six groups (NO, saline treated group; CO, 1% carboxy methyl cellulose (CMC) treated group; PC, fucidin treated group; LCL, 1% LC treated group; LCM, 3% LC treated group; LCH, 5% LC treated group), and the experimental material was applied for 5 weeks. Elastase inhibition rate of the LCM group was 2.7% lower than that of butylated hydroxy anisole (BHA), which is an antioxidant. Futher, the collagenase inhibition rate of the LCM showed 7% higher activity than that of BHA. The left wound areas in the LCL group, LCM group, and LCH group after the 21st day were noticeably reduced in wound area by 54.2%, 53.5%, and 48.7%, respectively, compared to the CO group. This suggests that Lespedeza cuneata extract has healing effects on surgical wounds by promoting regeneration of skin epithelial tissue and synthesis of collagen.