• Title/Summary/Keyword: Worst-case Execution Time Analysis

Search Result 24, Processing Time 0.022 seconds

Measuring Method of Worst-case Execution Time by Analyzing Relation between Source Code and Executable Code (소스코드와 실행코드의 상관관계 분석을 통한 최악실행시간 측정 방법)

  • Seo, Yongjin;Kim, Hyeon Soo
    • Journal of Internet Computing and Services
    • /
    • v.17 no.4
    • /
    • pp.51-60
    • /
    • 2016
  • Embedded software has requirements such as real-time and environment independency. The real-time requirement is affected from worst-case execution time of loaded tasks. Therefore, to guarantee real-time requirement, we need to determine a program's worst-case execution time using static analysis approach. However, the existing methods for worst-case execution time analysis do not consider the environment independency. Thus, in this paper, in order to provide environment independency, we propose a method for measuring task's execution time from the source codes. The proposed method measures the execution time through the control flow graph created from the source codes instead of the executable codes. However, the control flow graph created from the source code does not have information about execution time. Therefore, in order to provide this information, the proposed method identifies the relationships between statements in the source code and instructions in the executable code. By parameterizing those parts that are dependent on processors based on the relationships, it is possible to enhance the flexibility of the tool that measures the worst-case execution time.

Bounding Worst-Case Data Cache Performance by Using Stack Distance

  • Liu, Yu;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.4
    • /
    • pp.195-215
    • /
    • 2009
  • Worst-case execution time (WCET) analysis is critical for hard real-time systems to ensure that different tasks can meet their respective deadlines. While significant progress has been made for WCET analysis of instruction caches, the data cache timing analysis, especially for set-associative data caches, is rather limited. This paper proposes an approach to safely and tightly bounding data cache performance by computing the worst-case stack distance of data cache accesses. Our approach can not only be applied to direct-mapped caches, but also be used for set-associative or even fully-associative caches without increasing the complexity of analysis. Moreover, the proposed approach can statically categorize worst-case data cache misses into cold, conflict, and capacity misses, which can provide useful insights for designers to enhance the worst-case data cache performance. Our evaluation shows that the proposed data cache timing analysis technique can safely and accurately estimate the worst-case data cache performance, and the overestimation as compared to the observed worst-case data cache misses is within 1% on average.

Holistic Scheduling Analysis of a CAN based Body Network System (CAN을 이용한 차체 네트웍 시스템에 대한 Holistic 스케줄링 해석)

  • 신민석;이우택;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.114-120
    • /
    • 2002
  • In a distributed real-time control system, it is essential to confirm the timing behavior of all tasks because these tasks of each real-time controller have to finish their processes within the specified time intervals called a deadline. In order to satisfy this objective, the timing analysis of a distributed real-time system such as shcedulability test must be performed during the system design phase. In this study, a simple application of CAN fur a vehicle body network system is formulated to apply to a holistic scheduling analysis, and the worst-case execution time (WCET) and the worst-case end-to-end response time (WCRT) are evaluated in the point of holistic system view.

Bounding Worst-Case Performance for Multi-Core Processors with Shared L2 Instruction Caches

  • Yan, Jun;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-18
    • /
    • 2011
  • As the first step toward real-time multi-core computing, this paper presents a novel approach to bounding the worst-case performance for threads running on multi-core processors with shared L2 instruction caches. The idea of our approach is to compute the worst-case instruction access interferences between different threads based on the program control flow information of each thread, which can be statically analyzed. Our experiments indicate that the proposed approach can reasonably estimate the worst-case shared L2 instruction cache misses by considering the inter-thread instruction conflicts. Also, the worst-case execution time (WCET) of applications running on multi-core processors estimated by our approach is much better than the estimation by simply assuming all L2 instruction accesses are misses.

Implementation of Worst Case Execution Time Analysis Tool For Embedded Software based on XScale Processor (XScale 프로세서 기반의 임베디드 소프트웨어를 위한 최악실행시간 분석도구의 구현)

  • Park, Hyeon-Hui;Choi, Myeong-Su;Yang, Seung-Min;Choi, Yong-Hoon;Lim, Hyung-Taek
    • The KIPS Transactions:PartA
    • /
    • v.12A no.5 s.95
    • /
    • pp.365-374
    • /
    • 2005
  • Schedulability analysis is necessary to build reliable embedded real-time systems. For schedulability analysis, worst-case execution time(WCET) analysis that computes upper bounds of the execution times of tasks, is required indispensably. WCET analysis is done in two phases. The first phase is high-level analysis that analyzes control flow and finds longest paths of the program. The second phase is low-level analysis that computes execution cycles of basic blocks taking into account the hardware architecture. In this thesis, we design and implement integrated WCET analysis tools. We develop the WCET analysis tools for XScale-based system called WATER(WCET Analysis Tool for Embedded Real-time system). WATER consist of high-level flow analyzer and low-level execution time analyzer. Also, We compare real measurement for execution of program with analysis result calculated by WATER.

An Interference Matrix Based Approach to Bounding Worst-Case Inter-Thread Cache Interferences and WCET for Multi-Core Processors

  • Yan, Jun;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.2
    • /
    • pp.131-140
    • /
    • 2011
  • Different cores typically share the last-level cache in a multi-core processor. Threads running on different cores may interfere with each other. Therefore, the multi-core worst-case execution time (WCET) analyzer must be able to safely and accurately estimate the worst-case inter-thread cache interference. This is not supported by current WCET analysis techniques that manly focus on single thread analysis. This paper presents a novel approach to analyze the worst-case cache interference and bounding the WCET for threads running on multi-core processors with shared L2 instruction caches. We propose to use an interference matrix to model inter-thread interference, on which basis we can calculate the worst-case inter-thread cache interference. Our experiments indicate that the proposed approach can give a worst-case bound less than 1%, as in benchmark fib-call, and an average 16.4% overestimate for threads running on a dual-core processor with shared-L2 cache. Our approach dramatically improves the accuracy of WCET overestimatation by on average 20.0% compared to work.

Multicore-Aware Code Co-Positioning to Reduce WCET on Dual-Core Processors with Shared Instruction Caches

  • Ding, Yiqiang;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.1
    • /
    • pp.12-25
    • /
    • 2012
  • For real-time systems it is important to obtain the accurate worst-case execution time (WCET). Furthermore, how to improve the WCET of applications that run on multicore processors is both significant and challenging as the WCET can be largely affected by the possible inter-core interferences in shared resources such as the shared L2 cache. In order to solve this problem, we propose an innovative approach that adopts a code positioning method to reduce the inter-core L2 cache interferences between the different real-time threads that adaptively run in a multi-core processor by using different strategies. The worst-case-oriented strategy is designed to decrease the worst-case WCET among these threads to as low as possible. The other two strategies aim at reducing the WCET of each thread to almost equal percentage or amount. Our experiments indicate that the proposed multicore-aware code positioning approaches, not only improve the worst-case performance of the real-time threads but also make good tradeoffs between efficiency and fairness for threads that run on multicore platforms.

Exploiting Static Non-Uniform Cache Architectures for Hard Real-Time Computing

  • Ding, Yiqiang;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.4
    • /
    • pp.177-189
    • /
    • 2015
  • High-performance processors using Non-Uniform Cache Architecture (NUCA) are increasingly used to deal with the growing wire delays in multicore/manycore processors. Due to the convergence of high-performance computing with embedded computing, NUCA caches are expected to benefit high-end embedded systems as well. However, for real-time systems that use multicore processors with NUCA caches, it is crucial to bound worst-case execution time (WCET) accurately and safely. In this paper, we developed a WCET analysis approach by considering the effect of static NUCA caches on WCET. We compared the WCET in real-time applications with different topologies of static NUCA caches. Our experimental results demonstrated that the static NUCA cache could improve the worst-case performance of realtime applications using multicore processor compared to the cache with uniform access time.

Service Execution Time Estimation in Real-time SOA (실시간 SOA에서 서비스의 실행시간 예측)

  • Kim, Yeo-Ja;Byun, Jeong-Yong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.7
    • /
    • pp.510-514
    • /
    • 2009
  • If the existing real-time systems are integrated based on SOA, real-time SOA should be developed. Generally, in real-time SOA a service can be divided into several small services and their estimated execution time is given by provider systems. However, an estimation, which analyzes time elements related to transmit and receive messages among requesters and providers, is needed. In order to enhance QoS of Web service, this paper proposes enhanced worst-case execution time estimation by considering WS-transaction and common use of multi-processors system.

Worst Case Response Time Analysis for Demand Paging on Flash Memory (플래시 메모리를 사용하는 demand paging 환경에서의 태스크 최악 응답 시간 분석)

  • Lee, Young-Ho;Lim, Sung-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.113-123
    • /
    • 2006
  • Flash memory has been increasingly used in handhold devices not only for data storage, but also for code storage. Because NAND flash memory only provides sequential access feature, a traditionally accepted solution to execute the program from NAND flash memory is shadowing. But, shadowing has significant drawbacks increasing a booting time of the system and consuming severe DRAM space. Demand paging has obtained significant attention for program execution from NAND flash memory. But. one of the issues is that there has been no effort to bound demand paging cost in flash memory and to analyze the worst case performance of demand paging. For the worst case timing analysis of programs running from NAND flash memory. the worst case demand paging costs should be estimated. In this paper, we propose two different WCRT analysis methods considering demand paging costs, DP-Pessimistic and DP-Accurate, depending on the accuracy and the complexity of analysis. Also, we compare the accuracy butween DP-Pessimistic and DP-Accurate by using the simulation.

  • PDF