
Copyright © 2011. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

An Interference Matrix Based Approach to Bounding Worst-
Case Inter-Thread Cache Interferences and WCET for Multi-
Core Processors
Jun Yan
Mathworks, Boston, MA, USA Jun.Yan@mathworks.com

Wei Zhang*
Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, USA wzhang4@vcu.edu

Abstract
Different cores typically share the last-level cache in a multi-core processor. Threads running on different cores may interfere with
each other. Therefore, the multi-core worst-case execution time (WCET) analyzer must be able to safely and accurately estimate the
worst-case inter-thread cache interference. This is not supported by current WCET analysis techniques that manly focus on single
thread analysis. This paper presents a novel approach to analyze the worst-case cache interference and bounding the WCET for threads
running on multi-core processors with shared L2 instruction caches. We propose to use an interference matrix to model inter-thread
interference, on which basis we can calculate the worst-case inter-thread cache interference. Our experiments indicate that the proposed
approach can give a worst-case bound less than 1%, as in benchmark fib-call, and an average 16.4% overestimate for threads running
on a dual-core processor with shared-L2 cache. Our approach dramatically improves the accuracy of WCET overestimatation by on
average 20.0% compared to work.

Category: Embedded computing

Keywords: Worst-case execution time; Inter-thread cache interferences; Multicore computing

I. INTRODUCTION

The computer industry is rapidly moving toward single-chip
multi-core processors or chip multiprocessors (CMP) with the
scaling of technology and the diminishing returns of complex
uniprocessors. Multi-core processors have been widely used in
servers, desktops, and embedded systems. In particular, with the
growing demand of high performance for high-end real-time ap-
plications, such as high-definition television (HDTV) and video
encoding/decoding standards, it is expected that multi-core pro-
cessors will be increasingly used in real-time systems to achieve
higher performance/throughput cost-effectively. It is projected
that real-time applications will be likely deployed on large-scale
multi-core platforms with tens or even hundreds of cores per

chip fairly soon [1].
It is crucial to obtain the worst-case execution time (WCET)

of each real-time task, for real-time systems, especially hard
real-time systems. This will provide the basis for schedulability
analysis. Missing deadlines in those systems may lead to serious
consequences; this is not allowed. While the WCET of a single
task can be measured for a given input, it is generally infeasible
to exhaust all the possible program paths through measurement.
Another approach to obtaining WCET is to use static WCET
analysis (simply termed WCET analysis). WCET analysis typi-
cally consists of three phases: program flow analysis, low-level
analysis, and WCET calculation. While the program flow analy-
sis analyzes the control flow of the assembly programs that are
machine-independent, the low-level analysis analyzes the tim-

*Corresponding Author

10.5626/JCSE.2011.5.2.131Open Access

Regular Paper

Received 18 February 2011, Accepted 21 March 2011

http://jcse.kiise.org

Journal of Computing Science and Engineering,
Vol. 5, No. 2, June 2011, pp. 131-140

Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 131-140

DOI: 10.5626/JCSE.2011.5.2.131 132 Jun Yan and Wei Zhang

ing behavior of the microarchitectural components. The WCET
calculation phase computes the estimated worst-case execution
cycles using methods, such as path-based approach [2, 3] or
implicit path enumeration technique (IPET) [4-6], based on the
information obtained from the program flow analysis and the
low-level analysis.

While there have been many research efforts on WCET
analysis for single-core processors [1-6], to our best knowledge
only a few recent efforts [7-9] study how to bind the WCET
for multi-core processors with shared L2 instruction caches. A
major reason is probably the significant complexity involved
with the WCET analysis for multi-core processors. Even for to-
day’s single-core processors, many architectural features, such
as cache memories, pipelines, out-of-order execution, specula-
tion and branch prediction have made “accurate timing analysis
very hard to obtain” [10]. Multi-core computing platforms can
further aggravate the complexity of WCET analysis due to the
possible inter-thread interference in shared resources, such as L2
caches, which are very difficult to analyze statically. While there
have been some recent research efforts on real-time scheduling
for multi-core platforms [1, 11, 12], all these studies assume the
worst-case performance of real-time threads is known. There-
fore, it is necessary to reasonably bind the WCET of real-time
threads running on multi-core processors before multi-core plat-
forms can be safely employed by real-time systems.

This paper presents a novel approach to analyze the maxi-
mum interferences and bounding the worst-case performance
for threads running on multi-core processors with shared L2
instruction caches. The idea of our approach is to detect the
maximum L2 access interference, by exploiting the L2 access
sequence for different threads that can be acquired by examining
edge transition from the calculation of integer linear program-
ming (ILP). This also differentiates this from our previous work
[7] that is based on the analysis of the appearance of L2 accesses
for multi-core processor WCET calculation. Also, compared to
related work in [8, 9], in which the computation cost is high, the
algorithms proposed in this paper are very efficient. Most bench-
marks studied in this paper can be analyzed within seconds.

The remainder of the paper is organized as follows. First, we
discuss the paradigm of the WCET analysis for multi-core chips
with shared caches in Section II. Then we describe our approach
to computing the worst-case shared L2 instruction cache perfor-
mance and the WCET for multi-core processors in Section III.
The evaluation methodology is given in Section IV. Experimen-
tal results are presented in Section V. We discuss related work in
Section VI. We make concluding remarks in Section VII.

II. PARADIGM OF WCET ANALYSIS FOR MULTI-
CORE CHIPS WITH SHARED L2 CACHES

In a multi-core processor, each core typically has private
L1 instruction and data caches. The L2 (and/or L3) caches can
be either shared or private. While private L2 caches are more
time-predictable in the sense that there are no inter-core con-
flicts, each core can only exploit limited cache space. Due to
the great impact of the L2 cache hit rate on the performance
of multi-core processors [13, 14], private L2 caches may have
worse performance than shared L2 caches with the same total

size, because each core with the shared L2 cache can make use
of the aggregate L2 cache space more effectively. Moreover,
shared L2 cache architecture makes it easier for multiple co-
operative threads to share instructions, data, and the precious
memory bandwidth to maximize performance. Therefore, in
this paper, we focus on WCET analysis of multi-core proces-
sors with shared L2 caches (by contrast, the WCET analysis for
multi-core chips with private L2 caches is a less challenging
problem).

A. A Dual-Core Processor with a Shared L2 Cache

A typical dual-core processor, as can be seen in Fig. 1a, has
private L1 instruction caches, private L1 data caches, and a uni-
fied L2 cache. Since this paper focuses on the inter-thread inter-
ference for instruction caches, we slightly modify the processor
in Fig. 1a, as in Fig. 1b. We still assume a dual-core processor
with two levels of cache memory. However, as can be seen from
Fig. 1b, in this dual-core processor, each core has its own L1
instruction cache and perfect data cache (dL1*). Only L1
instruction caches share a unified L2 instruction cache. Mean-
while, we apply our proposed approach to instruction caches
that can be easily extended to data caches. We assume that a
real-time thread (RT) and a none real-time thread (NRT) are
running simultaneously on these two cores. Our goal is to detect
the maximum interference for the RT by considering the NRT
and give a tight bound on WCET for RT.

B. Conflicts between Real-time Thread and None
Real-time Thread

First, we present how a conflict arises. In a single-core pro-
cessor, L2 reference may be pre-fetched before its access occurs
due to the inclusion of L1 caches. This leads to a L2 hit when
a reference tries to access the pre-fetched L2 reference. A loop
body is another scenario for a L2 hit, if no two or more L2 ref-
erences are mapped to the same cache line, then the remaining
accesses of this L2 cache line should be always hit, except for a
cold miss. However, in a multi-core processor, shared L2 cache
may introduce conflicts between the Real-time thread and none

Fig. 1. Typical two core CPU with private L1 instruction and data cache
and unified L2 caches, dL1* is perfect data cache.

An Interference Matrix Based Approach

133 http://jcse.kiise.orgJun Yan and Wei Zhang

real-time thread, when they run simultaneously. This makes the
above-mentioned L2 hit scenarios never hold under the worst-
case circumstance.

Let us see the example in Fig. 2 in which two threads run
and access the unified L2 cache. The access sequence for the
real time thread is {a b c b a}. The sequence for the none real-
time thread is {a b c}. Here, letters a, b, c denote the cache line
number.

Without considering the conflicts between real time thread
and none real-time thread, the first three references of the real
time thread {a b c} are misses and the remaining references {b
a} are hits.1

Now, if we take the none real-time thread into ac-

count, we notice that none real-time thread uses the same cache
lines as in the real time thread. Specifically, the none real-time
thread also accesses {a b c}. Therefore, a situation may exist
when, after the first reference of the real time thread, the first
reference of the none real-time thread occurs. Then, the refer-
ence from the none real-time thread evicts the reference of the
real time thread out of the cache line. Consequently, it turns the
next access to this cache line from a real time thread into a miss.
In Fig. 2, two conflicts, labeled conflict a and conflict b, exist.
Under the worst-case situation the real time thread may suffer
five misses due to the influence of the none real-time thread.
We believe that this is non-trivial compared to its best case for
three misses.

C. Detecting the Maximum Interferences in Shared
L2 Cache

The most difficult problem for multi-core WCET analysis is
to find the maximum interference in shared L2 cache. As above
mentioned in section 2.2, the inter-core L2 instruction interfer-
ence depends on several factors, including 1) the instruction
addresses of the L2 accesses of each thread, 2) which cache
block these instructions may be mapped to, 3) when these in-
structions are accessed, and 4) in what order these instructions
are accessed. While 1) and 2) can be easily identified, 3) and
4) are very challenging to be statically acquired. In this paper,
we examine the static timing information of L2 accesses from
different threads and build an interference graph to detect the

maximum interference among different threads. The following
assumptions/observations serve as the basis on which to formu-
late our approach.

1. In order intra-thread access. Accesses to L2 shared cache
for both real time thread and none real-time thread are in
order. The order of references cannot be altered.

2. Maximum one impact or none. For a none real-time thread,
each reference is only able to produce one miss impact on
real time thread or NONE. Although, it may actually con-
flict with multi-accesses in the real-time thread.

3. No impact on miss. If a reference of a real time thread is a
miss, then no impact will be considered.

4. Impact on hit. If a reference of a real time thread is a hit,
then it may be affected by a none real-time thread. When
a hit is affected by the none real-time thread reference, a
miss is produced.

Rule 1 specifies the L2 access sequences for both real time
thread and none real-time thread. This serves as the basis for stat-
ic timing analysis. The sequences can be acquired by analyzing
the edge transition information from ILP [4]. Rule 2 defines the
maximum interferences from each none real-time thread access
to the real-time thread reference. This gives the upper bound for
maximum interferences that could be produced by considering
the none real-time thread. Rules 3 and 4 are straightforward. We
propose to formulate our problem using a matrix, based on the
above-mentioned assumptions/observations, as follows.

1. Matrix definition. Starting from the left-top, the top-to-
down axis is the reference from the real time thread, and
the left-to-right axis is the references from the none real-
time thread. E.g. in Fig. 3a, the real-time thread access se-
quence is placed in row order, and none real-time thread
access sequence is placed in column order.

2. Matrix construction. For each element Mij in matrix, i is
the row position and j is the column position. Mij =1, when
the jth reference from the none real-time thread is inserted

Fig. 3. Example of problem formulation stages.

Fig. 2. Example of conflicts between real time and none real-time threads.

1Suppose the cache is sufficiently large in this example.

Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 131-140

DOI: 10.5626/JCSE.2011.5.2.131 134 Jun Yan and Wei Zhang

into the ith position of the real time thread access sequence.
It impacts the real time thread. Otherwise, Mij=0. E.g. in
Fig. 3b, M10=1, because it evicts the real-time cache refer-
ence (a) out of L2 cache, when placing 0th access (a) from
none real-time thread to 1th position of real-time access se-
quence. This leads the 4th access (a) of the real-time thread
to miss. This is an impact by our definition.

3. Matrix iteration. Starting at any point, it can only walk
right-to-left and top-to-down. E.g. in Fig. 3c, at position
(1,1), the next available positions are (1,2) or (2,1).

4. Down iteration wall. Starting at any point, when walking
down, only one 1 will be considered. This is from the ob-
servation of item 2. E.g. in Fig. 3d, although reference (b)
from the none real-time thread can impact the real-time
thread from position (1,1) through (3,1), only one position
of (1,1) through (3,1) should be considered as valid 1.

5. Consecutive 1s. For any column, the impact from the none re-
al-time thread to the real time thread is consecutive. Start-
ing from the first position (i,k) through (j,k), all Mi...j,k=1.
E.g. in Fig. 3e, reference (b) starts to impact the real-time
thread from position (1,1) through (3,1), thus all M1...3,1 are 1.

6. Longest path. The path with the maximum number of 1s
will be the longest path. E.g. as can be seen in Fig. 3f, one
of the possible longest paths is (0,0), (1,1) and (1,2).

The problem to detect the maximum interference for the
multi-core processor with shared L2 instruction cache can now
be defined as how to determine the longest path in our proposed
matrix.

III. FINDING THE LONGEST PATH

Observation 2 tells us that each none real-time thread access
produces either a 1 (impact) on the real-time thread or 0 (no
impact) on the real-time thread. Therefore, at any column of the
matrix, only two statuses could be encountered. Motivated by
this observation, we propose to use a binary tree search to deter-
mine the longest path.

A. Binary Tree Search

Suppose the matrix is an m×n matrix, each column produces
only two statuses, impact on the real time thread, and no impact
on the real time thread. Thus, from left-to-right we can build a
binary tree with one leaf representing the impact on the real time
thread and another leaf representing no impact on the real time
thread. After tree construction, from any leave to the root, the
path with the maximum number of “1”s is the longest path. In
our implementation, we use the right leaf to represent the impact
on the real time thread, and the left leaf to represent no impact
on the real time thread.

1) Searching Algorithm:
This algorithm has three arguments, as shown at line 2 to line

4. Argument curr_lev has members {value, right, left}, in which
the value is defined as the number of 1s when reaching the cur-
rent leaf, right and left are two child leaves. The interference
matrix is a two dimensional matrix, as described in section 2.3.
Argument max_len records the longest length of the visited path.

Max_len is initialized to 0. When building each leaf, if the value
of the leaf is greater than max_len, then max_len is updated to
be the value of the leaf.

Two auxiliary functions search_one() (line 8) and search_
zero() (line 17) return the position of found 1 or 0 in the column.
If posfound, function alloc_leave() allocates the memory for the
child-leaf, else stop building this branch.

In this algorithm, the convergence condition is line 7. That is,
end-leaves are encountered, when the program reaches the last
column of the matrix.

It should be noted that it is too expensive to exhaust all the
paths. Therefore, there are also three pruned-leaf conditions in
our algorithm. They can significantly reduce the time complex-
ity, as follows.

1. line 6: If the value of the current leaf + the number of col-
umns left to go through is less than max_len, then it is not
necessary to construct this leaf and its children. The rea-
son is that “value of the current leaf + the number of the
columns left to go through” is the theoretically maximum
“1”s starting at this position. If it is still less or equal to
maxlen, which is the “1”s already found, then it means that
from the current position, we cannot find a longer path than
the path(s) we have already found.

2. line 9: At any column, if we cannot find 1 (all 0) from the
starting position until the bottom row, then do not build the
right leaf and the rest of its children. This is because that
if starting at any position the remaining rows are all “0”s,
then the left leaf (0 leave) must be constructed due to the
presence of ’0’. Meanwhile, since no ’1’ presents, if right

An Interference Matrix Based Approach

135 http://jcse.kiise.orgJun Yan and Wei Zhang

Meanwhile, update the current leaf position to (0,0).
3. Build the left leaf. The left leaf seeks the 0 in a column

at the starting position. At the starting position, if ’01 oc-
curs, remember this position as the current position. If no
0 is present at the starting position of this column, then the
program no longer construct leaves from this leaf.

(1 leaf) leaf is constructed, it is actually constructed by a
virtual ’1’, which is considered as ’0’ when calculating the
length of path at this leaf. Therefore, this virtual ’1’ func-
tions the as same as the construction of the right leaf and
can be skipped.

3. line 18: At any column, if we cannot find ’0’ at the start-
ing position, then do not build the left leaf and the rest of
its children. Here, the starting position is defined as the
next immediately available position. E.g. in Fig. 4a, if the
parent position reaches (0,0), then the starting position for
its child is (0,1). Next, we need to introduce 1-(sub-)
matrix, as seen in Fig. 4a, a 1-(sub-)matrix is de
fined as the element at the left-top corner of a matrix, being
’1’. So does 0-(sub-)matrix, as can been seen in Fig.
4b. Now, we can see that the longest path of a 0-(sub-)
matrix is less than or equal to a 1-(sub-)matrix
if 0-(sub-)matrix is a sub-matrix of 1-(sub-)ma-
trix. E.g. in Fig. 4c, 1-(sub-)matrix in the dotted
box has a longest path of 3, which is greater that the longest
path of 0-(sub-)matrix in the dotted box. However,
if a 1-(sub-)matrix is a sub-matrix of a 0-(sub-)
matrix, then the longest path of a 1-(sub-)matrix
is not necessary less than a 0-(sub-)matrix, as can be
seen in Fig. 4d.

2) Example to Find Maximum Interference:
In this section, we use Figs. 5-7 to illustrate how to build the

example into a binary tree and how to detect the longest path.
The steps are as follows,

1. Starting from the root. Add two leaves. Always use the
right leaf to seek the first 1 in the column and left leaf to
seek 0.

2. Build the right leaf. From previous position, move to the
current column. From top-to-bottom, seek the first occur
rence 1, and remember this position as the current position.
Specifically, if a 1 is found, update the value of the current
leaf. The value equals to the value of the parent node plus
1. If no 1s can be found, the branch should not proceed.
In the example shown in Fig. 5, the right leaf finds posi
tion (0,0) is a 1, then updates its value to 0+1, which is 1.

Fig. 7. Example 3rd level tree construction.

Fig. 4. Example sub-matrix and its relationships.

Fig. 5. Example 1st level tree construction.

Fig. 6. Example 2nd level tree construction.

Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 131-140

DOI: 10.5626/JCSE.2011.5.2.131 136 Jun Yan and Wei Zhang

4. Build leaves recursively. Build the leaves until no column
left.

3) Prune-leaf Example:
In Fig. 8, after constructing the first right path, the max_len is

updated to 2. When constructing the left path, e.g. at left position
(1,0), the current leaf value is 0 and there will two more columns
left to construct. Therefore, the maximum number of 1 could be
0+2, which is 2. Comparing this 2 to max_len, it will not be able
to be greater than max_len. Therefore, we may cut the construc-
tion of the remaining leaves.

B. Integer Linear Programming for WCET
A major drawback for Trimaran [15] is that it is a procedural-

based framework. This makes inter-procedure analysis and op-
timization very difficult. We build a stand-alone ILP constraint
analyzer based on the work of [4] to support Trimaran with ILP.
Major extensions of work [4] that support Trimaran are inter-
procedure analysis, L2 cache ILP support and path re-construc-
tion. The following steps are described.

1. Procedure Name Resolution. We extend ELCOR of Trima-
ran, so that it exports CFG of each procedure and explicitly
specifies the target name of each branch2. This informa-
tion then is read as input for our program to perform inter-
procedure analysis.

2. Global Control Flow Graph. After the target name of the
branch is resolved, the Global Control Flow Graph is con-
structed, which embeds all the procedures into the control
flow graph of the main procedure.

3. Static Cache Analysis. Static Cache Analysis first labels the
line block of the Global Control Flow Graph, and second,
determines the conflicting line blocks for each cache line.

4. Cache Conflict Graph. The cache conflict graph is con
structed based on static cache analysis. It is used to gener-
ate the cache constraints.

5. Object Function. The object function is re-written by con-
sidering the cost of both L1 and L2 cache misses.

6. Flow Constraints. The flow constraints are derived from

structural constraints.
7. Functional Constraints. The functional equations are pro-

duced based on the Global Control Flow Graph, which
mainly focuses on the relationship between the number of
execution times of each basic block and its associated loop
body.

8. ILP solver. We use a commercial ILP solver -CPLEX to
solve the ILP problem.

9. Path re-construction. Based on the results from ILP solver,
we derive the WCET path and L2 access sequence along
the WCET path. This information serves as input to our L2
interference analyzer.

Details of ILP and implementation are outside the scope of
this paper. They can be found in [4-6].

C. WCET Calculation

Our final WCET calculation is the sum of WCET of a single
thread calculated by ILP and analyzed L2 inter-thread penalties.

IV. EVALUATION METHODOLOGY

The WCET analysis for our proposed approach is based on
four components, a) a heterogeneous dual-core simulator, b) a
LP analyzer, c) a L2 conflict analyzer and d) Chronos [16]. The
heterogeneous dual-core simulator is constructed by extend-
ing Trimaran 3.7 [15], SimpleScalar 2.0 [15], and Dinero IV
[16]. In Fig. 9, Trimaran simulates very long instruction word
(VLIW) architecture and SimpleScalar simulates Scalar archi-
tecture. Both use Dinero to simulate the memory hierarchy.
Each core is implemented using a thread that can be spawned
simultaneously at run-time to simulate a dual-core processor. A
cache access buffer is implemented to synchronize the accesses
from different cores to the caches. In our experiment, memory
is configured as in Table 1, our VLIW processor contains four
IALUs, two FPUs, one Ld/St, one Branch unit and 32 regis-
ters. Our Scalar processor is configured as an in-order 4-issue

Fig. 9. Evaluation architecture in our experiment.

2Trimaran uses BRL instruction to call the procedure and the target address is stored in a branch register calculated by instruction PBRR.

Fig. 8. Example leaf cutting.

An Interference Matrix Based Approach

137 http://jcse.kiise.orgJun Yan and Wei Zhang

processor. The LP analyzer is implemented and incorporates a
commercial ILP solver -CPLEX to handle the VLIW core linear
programming analysis, which generates WCET compute cycles,
number of misses for both L1 cache and L2 cache and the L2
access sequences.

In our experiments, we compare our interference matrix (IM)
approach to simulated average-case performance and IM with

the control flow (CF) based approach in [7]. Results show IM
can achieve much tighter bound for WCET. The benchmarks
are selected from Mälardalen WCET benchmarks [17] and me-
diabench [18]. Table 2 lists the salient characteristics and de-
scription for these benchmarks. In the experiments, we choose
ten real-time benchmarks from Mälardalen WCET benchmarks
[17], and two media benchmarks [18] for real-time thread simu-
lation. Benchmark crc from Mälardalen WCET benchmarks
is selected for none real-time thread simulation. The real-time
thread runs on Trimaran, and crc is on SimpleScalar.

V. EXPERIMENTAL RESULTS

Table 3 compares the normalized WCET cycles between IM

Table 1. Configuration of the dual-core chip memory hierarchy

Size Bsize Assoc Latency

L1-i-cache 512 16 1 10

L1-d-cache Perfect

L2-u-cache 2k 32 1 100

Table 2. Salient Characteristics for Mälardalen WCET benchmarks and Mediabench

RT No. of inst Source Description

bs 81 Mälardalen WCET benchmarks Binary search for the array of 15 integer elements.

fibcall 42 Mälardalen WCET benchmarks Simple iterative Fibonacci calculation

insertsort 1,049 Mälardalen WCET benchmarks Insertion sort on a reversed array of size 10.

jfdctint 865 Mälardalen WCET benchmarks Discrete-cosine transformation on a 8 × 8 pixel block

ludcmp 874 Mälardalen WCET benchmarks Read ten values, output half to LCD

matmul 96 Mälardalen WCET benchmarks Matrix multiplication of two 20 × 20 matrices.

minver 835 Mälardalen WCET benchmarks Inversion of floating point matrix

qsort-exam 290 Mälardalen WCET benchmarks Non-recursive version of quick sort algorithm

qurt 751 Mälardalen WCET benchmarks Root computation of quadratic equations

select 273 Mälardalen WCET benchmarks A function to select the nth largest number in a floating point array

rawcaudio 316 Mediabench Adaptive differential pulse code modulation

cordic 1,138 Mediabench Rotating complex numbers over the real field

WCET: worst-case execution time, RT: real-time thread.

Table 3. Comparing the L1 and L2 misses and execution cycles results between IM and CF

RT
Interference matrix Control flow New/old

WCET
ratioL1 miss L2 miss Conflicts Cycle L1 miss L2 miss Conflicts Cycle

bs 19 17 6 19809 19 18 7 19909 0.995

fibcall 12 9 2 13042 12 9 2 13042 1

insertsort 267 190 54 112897 267 248 112 118697 0.951

jfdctint 1435 214 95 49258 1435 957 838 123558 0.399

ludcmp 245 175 35 597860 245 209 69 601260 0.994

matmul 33 31 12 23519 33 32 13 23619 0.996

minver 511 247 97 42136 511 313 163 48736 0.865

qsort-exam 1387 89 44 34157 1387 229 184 48157 0.709

qurt 423 309 37 46439 423 370 98 52539 0.884

select 3176 132 98 59846 3176 1530 1496 199646 0.3

rawcaudio 3635 137 98 9852230 3635 2114 2075 10049930 0.98

cordic 1920080 740183 98 97879370 1920080 1635994 895909 187460470 0.522

Average 0.800

WCET: worst-case execution time, RT: real-time thread.

Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 131-140

DOI: 10.5626/JCSE.2011.5.2.131 138 Jun Yan and Wei Zhang

in this paper and AM in [7]. The results are organized to show
the number of L1 misses, the number of L2 misses, the number
of conflicts, estimated execution cycles and the normalized ratio
between our new approach and the previous work. On average,
the new approach improves WCET analysis by 20.0% compared
to our previous approach. Especially, for benchmarks with large
L1 misses, a very tight bound can be achieved, such as bench-
mark jfdctint, qsort-exam, select, rawcaudio, and cordic. The
main reason for this tighter bound is our previous work does not
consider the timing information of L2 accesses. This leads to a
too conservative estimate for the number of L2 cache misses,
especially for benchmarks with high L2 accesses but low L2
misses.

We also compare the new approach and the simulated results
to observe the effectiveness of our new approach. Table 4 shows
the number of L1 misses, the number of L2 misses, the execu-
tion cycles and the normalized ratio between our new approach
and the simulated results. We notice that for benchmark, such as
fibcall, we can obtain a tight bound less than 1% overestima-
tion and an overall average overestimation of 16.4%. Therefore,
the proposed approach gives a much tighter and more effective
WCET on the real-time threads for multi-core processor with
shared L2 instruction cache.

An obvious solution is either to disable the shared L2 cache
or assume all misses for L2 accesses, which provides the ref-
erence values to which we compare the results of our analysis

Table 4. Comparing the L1 and L2 misses and execution cycles results between IM and simulated results

RT
Interference matrix Simulated results

WCET/SIMU ratio
L1 miss L2 miss Cycle L1 miss L2 miss Cycle

bs 19 17 19809 19 11 19509 1.015

fibcall 12 9 13042 12 7 12942 1.008

insertsort 267 190 112897 263 132 110757 1.019

jfdctint 1435 214 49258 1428 110 45088 1.092

ludcmp 245 175 597860 218 110 586993 1.019

matmul 33 31 23519 29 15 22379 1.051

minver 511 247 42136 369 122 31823 1.324

qsort-exam 1387 89 34157 691 37 22285 1.533

qurt 423 309 46439 367 188 33957 1.368

select 3176 132 59846 1978 33 45013 1.33

rawcaudio 3635 137 9852230 3493 35 8620417 1.143

cordic 1920080 740183 97879370 1710060 700497 91614656 1.068

Average 1.164

WCET: worst-case execution time, RT: real-time thread.

Table 5. Comparing WCET results, assuming all L2 accesses are misses
(AM), using our static analysis approach interference matrix (IM)

RT IM AM Ratio

bs 19809 20009 0.990

fibcall 13042 13342 0.978

insertsort 112897 120597 0.936

jfdctint 49258 171358 0.287

ludcmp 597860 604860 0.988

matmul 23519 23719 0.992

minver 42136 68536 0.615

qsort-exam 34157 163957 0.208

qurt 46439 57839 0.803

select 59846 364246 0.164

rawcaudio 9852230 10202030 0.966

cordic 97879370 215869070 0.453

WCET: worst-case execution time, RT: real-time thread.

Table 6. Measured CPU time for constraint generation, ILP calculation
and our inter-thread interference analysis

RT Constraints ILP Inter analysis Total

bs 10 40 10 60

fibcall 0 10 10 20

insertsort 10 150 38 198

jfdctint 20 330 54 404

ludcmp 30 780 48 858

matmul 10 50 10 70

minver 20 1040 98 1158

qsort-exam 10 140 254 404

qurt 10 170 57 237

select 30 150 94 274

rawcaudio 200 190 101 491

cordic 30 730 3020 3780

ILP: integer linear programming, RT: real-time thread.

An Interference Matrix Based Approach

139 http://jcse.kiise.orgJun Yan and Wei Zhang

due to the difficulty of analyzing the inter-thread cache interfer-
ences and bounding the worst-case performance of the shared
L2 caches in a multi-core chip. Table 5 compares the estimated
WCET, assuming all L2 accesses are misses with the WCET
estimated by our approach. As can be seen, by statically bound-
ing the L2 cache instruction interferences, the estimated WCET
cache instruction interferences, the estimated WCET is much
smaller than the results, assuming all the L2 accesses are misses,
indicating the enhanced tightness of WCET analysis.

We also measure the program run time on a desktop with
1.86GHz Core2 Due processor and 2G RAM running Red Hat
Enterprise Linux 3. Table 6 shows the CPU time spent on dif-
ferent stages. The constraints column records the time spent
generating ILP constraints; ILP calculation time is shown in the
ILP column; and inter-thread interference calculation is shown
in the column interanalysis; the last column is the sum of all the
times from different stages. It can be seen, although the majority
of the time is spent on ILP calculation and inter-thread interfer-
ence detection, most of the benchmarks finish within seconds.

VI. RELATED WORK

Our recent work [7] first examined the timing analysis of
shared L2 instruction caches for multi-core processors. In the
paper, we proposed to exploit program control flow informa-
tion of each thread to safely and efficiently estimate the worst-
case L2 instruction cache conflicts. Although our experimental
results show that the estimated WCET is not too far from the
observed WCET for most benchmarks, overestimation is too
pessimistic for some benchmarks. A close look reveals that
overestimation mainly comes from three sources. First, the
worst-case execution counts of basic blocks are often larger than
the actual execution counts. Second, the cache static analysis
approach [19] used for the L1 cache instruction cache analysis is
very conservative. Third, our static L2 instruction miss analysis
does not consider the timing of interference from other threads.

In this paper, we employ a time predictable architecture [20]

to improve the worst-case execution counts for basic blocks to
address the first overestimation. This architecture [20] is incor-
porated into our framework, as in Fig. 9. From Table 7, it can
be seen that zero overestimation is achieved for basic block
counts for most of the benchmarks {bs, fibcall, insert-
sort, jfdctint, matmul}. Second, we derive our L2 ac-
cess sequences using edge transition information directly from
ILP calculation results. ILP exactly determines the WCET path
and cache status along WCET path compared to the static cache
analysis approach in [21]. Third, as proposed in this paper,
we explicitly consider the timing of interference from all the
threads.

VII. CONCLUDING REMARKS

This paper presented a novel and effective approach to
bounding the worst-case performance of multi-core processor
with shared L2 instruction caches. We propose to exploit the L2
access sequence information from different threads, which can
be acquired by examining edge transition from the calculation
results of ILP, to accurately estimate the runtime inter-core in-
struction interferences between different threads. In addition, a
time predictable architecture framework is constructed to evalu-
ate our approach. Our experimental results reveal that we can
achieve a tight bound on average overestimation of 16.4% than
observed simulated results and a more than 20% improvement
than in [7]. In addition, most benchmarks studied in this paper
can be computed within seconds to derive the WCET.

In our future work, we will extend our analysis to a greater
number of cores. In addition, it would be interesting to study
timing analysis for shared data caches and unified caches of
multicore processors.

REFERENCES

1.	 J. M. Calandrino, J. H. Anderson, and D. P. Baumberger, “A hybrid
real-time scheduling approach for large-scale multicore platforms,”
Proceedings of the 19th Euromicro Conference on Real-Time Sys-
tems, Pisa, Italy, 2007, pp. 247-256.

2.	 C. A. Healy, D. B. Whalley, and M. G. Harmon, “Integrating the
timing analysis of pipelining and instruction caching,” Proceedings
of the 16th IEEE Real-Time Systems Symposium, Pisa, Italy, 1995,
pp. 288-297.

3.	 F. Stappert, A. Ermedahl, and J. Engblom, “Efficient longest ex-
ecutable path search for programs with complex flows and pipeline
effects,” Proceedings of CASES 2001: International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems, At-
lanta, GA, 2001.

4.	 Y. T. S. Li and S. Malik, “Performance analysis of embedded soft-
ware using implicit path enumeration,” IEEE Transactions on Com-
puter-Aided Design of Integrated Circuits and Systems, vol. 16, no.
12, pp. 1477-1487, Dec. 1997.

5. 	Y. T. S. Li, S. Malik, and A. Wolfe, “Cache modeling for real-time
software: beyond direct mapped instruction caches,” Proceedings
of the 17th IEEE Real-Time Systems Symposium, Washington, DC,
1996, pp. 254-263.

6.	 G. Ottosson and M. Sjodin, “Worst-case execution time analysis

Table 7. WCET counts and simulated counts for basic blocks

RT WCET Simulated Ratio

bs 17919 17919 1

fibcall 12022 12022 1

insertsort 91227 91227 1

jfdctint 13508 13508 1

ludcmp 577910 572413 1.01

matmul 20089 20089 1

minver 12326 11533 1.069

qsort-exam 11387 9675 1.177

qurt 11309 10687 1.058

select 14886 14433 1.031

rawcaudio 9802180 8572187 1.143

cordic 4660270 4454556 1.046

WCET: worst-case execution time, RT: real-time thread.

Journal of Computing Science and Engineering, Vol. 5, No. 2, June 2011. pp. 131-140

DOI: 10.5626/JCSE.2011.5.2.131 140 Jun Yan and Wei Zhang

13.	 C. Liu, S. Anand, and M. Kandemir, “Organizing the last line of
defense before hitting the memory wall for CMPs,” Proceedings of
the 10th International Symposium on High Performance Computer
Architecture, Madrid, Spain, 2004, pp. 176-185.

14.	 J. Chang and G. S. Sohi, “Cooperative caching for chip multipro-
cessors,” ACM SIGARCH Computer Architecture News, vol. 34, no.
2, May. 2006.

15.	 L. N. Chakrapani, J. Gyllenhaal, W. H. Wenmei, and S. A. Mahlke,
Trimaran: an infrastructure for research in backend compilation and
architecture exploration, http://www.trimaran.org.

16.	 X. Li, Y. Liang, T. Mitra, and A. Roychoudhury, Chronos: a timing
analyzer for embedded software, Science of Computer Program-
ming, 2007.

17.	 Mälardalen Research and Technology Centre, WCET project/
Benchmarks, http://www.mrtc.mdh.se/projects/wcet/benchmarks.
html.

18.	 L. Chunho, M. Potkonjak, and W. H. Mangione-Smith, “MediaBen-
ch: a tool for evaluating and synthesizing multimedia and commu-
nications systems,” Proceedings of the Thirtieth Annual IEEE/ACM
International Symposium on Microarchitecture, Research Triangle
Park, NC, USA, 1997, pp. 330-335.

19.	 C. Ferdinand and R. Wilhelm, “Efficient and precise cache behavior
prediction for real-time systems,” Real-Time Systems, vol. 17, no.
2-3, pp. 131-181, Nov. 1999.

20.	 J. Yan and W. Zhang, “A time-predictable VLIW processor and its
compiler support,” Real-Time Systems, vol. 38, no. 1, pp. 67-84,
Jan. 2008.

21.	 C. Ferdinand and R. Wilhelm, “Efficient and precise cache behavior
prediction for real-time systems,” Real-Time Systems, vol. 17, no.
2-3, pp. 131-181, Nov. 1999.

for modern hardware architectures,” Proceedings of the ACM SIG-
PLAN Workshop on Languages, Compilers and Tools for Real-Time
Systems, Las Vegas, NV, 1997, pp. 47-55.

7.	 Y. Jun and Z. Wei, “WCET analysis for multi-core processors with
shared L2 instruction caches,” IEEE Real-Time and Embedded
Technology and Applications Symposium, St. Louis, MO, 2008, pp.
80-89.

8.	 Z. Wei and Y. Jun, “Accurately estimating worst-case execution
time for multi-core processors with shared direct-mapped instruc-
tion caches,” Proceedings of the 15th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applica-
tions, Beijing, China, 2009, pp. 455-463.

9.	 L. Yan, V. Suhendra, L. Yun, T. Mitra, and A. Roychoudhury, “Tim-
ing analysis of concurrent programs running on shared cache multi-
cores,” Proceedings of the 30th IEEE Real-Time Systems Sympo-
sium, Washington, DC, 2009, pp. 57-67.

10.	 R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D.
Whalley, G. Bernat, C. Ferdinand, R. Heckman, T. Mitra, F. Muel-
ler, I. Puaut, P. Puschner, J. Staschulat, and P. Stenstrom, “The worst
case execution time problem--overview of methods and survey of
tools,” ACM Transactions on Embedded Computing Systems, vol.
7, no. 3, pp. 1-52, Apr. 2008.

11.	 J. M. Calandrino, D. Baumberger, L. Tong, S. Hahn, and J. H.
Anderson, “Soft real-time scheduling on performance asymmet-
ric multicore platforms,” Proceedings of the 13th IEEE Real Time
and Embedded Technology and Applications Symposium, Bellevue,
WA, 2007, pp. 101-112.

12.	 J. H. Anderson, J. M. Calandrino, and U. C. Devi, “Real-time sched-
uling on multicore platforms,” Proceedings of the 12th IEEE Real-
Time and Embedded Technology and Applications Symposium, San
Jose, CA, 2006, pp. 179-190.

Jun Yan is currently Senior Software Developer at Mathworks. He received his PhD from Southern Illinois University
Carbondale (SIUC). Before he came to SIUC, he worked in R&D at Lucent Technologies from 2004 to 2005 and at Huawei
Technologies from 2002 to 2004. He received his MS from Tianjin University, China, in 2002, and BS from Shenyang Ar-
chitecture and Civil Engineering Institute, China, in 1998.

Jun Yan

Wei Zhang is an associate professor in Electrical and Computer Engineering at Southern Illinois University Carbondale. He
received the B.S. degree in computer science from the Peking University in China in 1997, the M.S
from the Institute of Software, Chinese Academy of Sciences in 2000, and the Ph.D. degree in computer science and en-
gineering from the Pennsylvania State University in 2003. His research interests are in embedded and realtime comput-
ing systems, computer architecture, and compilers. Dr. Zhang received the 2009 SIUC Excellence through Commitment
Outstanding Scholar Award for the College of Engineering, and 2007 IBM Real-time Innovation Award. His research has
been supported by NSF, IBM and Altera. He is a senior IEEE member. He has served as a member for technical program
committees of several IEEE/ACM conferences and workshops.

Wei Zhang

