설비나 작업자에 대한 부하효율은 제조공장에서 생산용량계획을 수립하는데 중요한 정보다. 즉 공장에서 신제품을 개발하거나, 생산량을 증가시킬 경우, 새로운 투자계획을 수립할 경우에도 항상 설비나 작업자에 대한 부하효율을 검토한다. 이러한 부하효율을 추정하기 위해서 다양한 측정방법이 사용된다. 본 본문에서는 설문조사, 순간관측법, 동영상 촬영을 이용한 미세동작연구방법, ERP시스템에서 자료를 취득하는 방법, 시뮬레이션방법 등 다양한 측정방법의 정확성에 대해 실제 사례를 이용해 비교분석하였다. 본 사례연구는 리드프레임이나 패키징용 부품을 생산하는 국내 반도체부품 생산공장을 대상으로 수행하였다.
This study aims to examine the effects of team member characteristics(change reception, work understand) and team process(potency, social support, workload sharing, communication and cooperation within the team) to team effectiveness(job commitment, job satisfaction and productivity), As the result, both team member characteristics and team process have positive relations with team effectiveness.
This paper aims to develope an algorithm to minimize the total production time, sum of group formation times and processing times, under the balanced workload among the machines by grouping parts with machine loading in FMS. The algorithm of this study is composed of four step procedures ; (1) Parts grouping by Group Technology(GT) (2) Minimizing total processing time in loading problem (3) Machine workload balancing, including above(2) (4) Group formation time, including above(3) For parts grouping, Rank Order Clustering(ROC) algorithm developed by King(1980) is used and this algorithm is programmed by using the MACRO functions of QUATTRO Pro, one of the spreadsheet packages. The structure for loading model is solved by using the Hyper-LINDO. As a case study, numerical examples are demonstrated to show the effectiveness of the proposed machine loading procedure.
In distributed databases, file replication and workload allocation are important design issues. This paper solves these two issues simultaneously, The primary objective is to minimize the system response time that consists of local processing and communication overhead on a local area network. Workload (query transactions) is assigned among any sites in proportion to the remaining file request service rate of the each server The problem is presented in the form of a nonlinear integer programming model. The problem is proved to be NP-complete and thus an efficient heuristic is developed by employing its special structure. To illustrate its effectiveness, it is shown that the proposed heuristic is based on the heuristic of a non-redundant allocation that was provided to be effective. The model and heuristics are likely to provide more effective distributed database designs.
A yard in a container terminal is a temporary storage space before containers are loaded onto the target vessel or delivered to consignees. For improving the utilization of the space in the yard and the efficiency of loading and discharging operations, it is important that operation plans must be carefully constructed in advance. A heuristic method is suggested to solve operation space planning problems considering workloads on handling equipment as well as space availabilities. The operation plans in this paper includes quay crane (QC) schedules and space plans for multiple vessels considering the workload in the container yard of container terminals. This paper evaluates the effectiveness of a space planning method and the performance of a new QC scheduling method using a simulation model.
멀티미디어 시스템에서 수행되는 부하 중 상당 부분은 정해진 시간에 주기적으로 수행되어 연속 매체(continuous media)를 처리하는 주기 태스크들이다. 연속 매체들을 처리하는 두 주기 태스크의 수행 요청 시간(release time)간에 인공적인 위상(phase)을 줄 경우, 전체 부하의 처리 타이밍에 영향을 주게 되며, 특히, 적절한 위상을 부여할 경우 부하가 고르게 분산된다. 부하의 고른 분산은 태스크 간섭을 줄여 지터(jitter), 종료시한 초과(deadline miss), 그리고 긴 응답 시간(response time) 등의 문제를 해소시킨다. 본 논문에서는 새로운 위상 스케줄링(phased scheduling) 알고리즘 및 알고리즘을 개발하고 평가할 수 있는 실험 환경을 제안한다. 본 논문에 제시된 알고리즘은 저자들의 선행 논문 1 에서 제시한 알고리즘의 대안이다. 새로운 알고리즘은 정확하게 최적의 위상을 찾지는 않으나 기존 알고리즘보다 빠르게 수행되며 적용 범위가 넓다.Abstract A multimedia system consists of substantial amount of continuous media workload scheduled periodically at deterministic time points. Artificial phase between the invocation times of any two continuous media tasks affects the timing of the entire workload. A proper phase configuration distributes workload uniformly over time and reduces task interference that may otherwise result in jitter, deadline miss, and long response time. The objective of this paper is to work out a phased scheduling algorithm and to evaluate its effectiveness. The algorithm in this paper is an alternative approach to our previous work 1 . It is almost as accurate as the predecessor but two of three times faster in identifying the appropriate phase vector.
The fourth industrial revolution, internet of things, and the expansion of online web services have increased an exponential growth and deployment in the number of cloud data centers (CDC). The cloud is emerging as new paradigm for delivering the Internet-based computing services. Due to the dynamic and non-linear workload and availability of the resources is a critical problem for efficient workload and resource management. In this paper, we propose the particle swarm optimization (PSO) based gated recurrent unit (GRU) neural network for efficient prediction the future value of the CPU and memory usage in the cloud data centers. We investigate the hyper-parameters of the GRU for better model to effectively predict the cloud resources. We use the Google Cluster traces to evaluate the aforementioned PSO-GRU prediction. The experimental shows the effectiveness of the proposed algorithm.
Several fields of science have demanded large-scale workflow support, which requires thousands of CPU cores or more. In order to support such large-scale scientific workflows, high capacity parallel systems such as supercomputers are widely used. In order to increase the utilization of these systems, most schedulers use backfilling policy: Small jobs are moved ahead to fill in holes in the schedule when large jobs do not delay. Since an estimate of the runtime is necessary for backfilling, most parallel systems use user's estimated runtime. However, it is found to be extremely inaccurate because users overestimate their jobs. Therefore, in this paper, we propose a novel system for the runtime prediction based on workload-aware clustering with the goal of improving prediction performance. The proposed method for runtime prediction of parallel applications consists of three main phases. First, a feature selection based on factor analysis is performed to identify important input features. Then, it performs a clustering analysis of history data based on self-organizing map which is followed by hierarchical clustering for finding the clustering boundaries from the weight vectors. Finally, prediction models are constructed using support vector regression with the clustered workload data. Multiple prediction models for each clustered data pattern can reduce the error rate compared with a single model for the whole data pattern. In the experiments, we use workload logs on parallel systems (i.e., iPSC, LANL-CM5, SDSC-Par95, SDSC-Par96, and CTC-SP2) to evaluate the effectiveness of our approach. Comparing with other techniques, experimental results show that the proposed method improves the accuracy up to 69.08%.
In this paper, we consider a multi-objective part-machine grouping problem, in which part types have several alternative part routings and each part routing has a machining sequence. This problem is characterized as optimally determining part type sets and its corresponding machine cells such that the sum of inter-cell part movements and the sum of machine workload imbalances are simultaneously minimized. Due to the complexity of the problem, a two-stage heuristic algorithm is proposed, and experiments are shown to verify the effectiveness of the algorithm.
최근 무인기는 정찰, 수송, 통신, 항공촬영 등 다양한 분야로 급속히 확대되고 있다. 또한 무인기 자동화 기술의 발전으로 한 명의 운용자가 복수의 무인기를 동시에 감독제어할 수 있게 되었다. 하지만 운용자에게 할당된 무인기의 대수가 많아지면 처리가 필요한 정보의 양이 많아져 운용자가 감당할 수 있는 부하보다 커질 수가 있다. 이에 따라 복수무인기를 제어하는 운용자의 과부하를 효율적으로 측정할 수 있는 지표 개발의 필요한 실정이나, 이와 관련된 연구가 미흡한 실정이다. 따라서 본 논문에서는 복수무인기 운용자 임무과부하 연구의 국내외 동향을 파악하고, 복수무인기 운용 시나리오와 지상체를 설계하여, 임무과부하 지표의 효용성을 검증하는 실험환경을 구축하여 향후 임무과부하 지표 연구를 위한 기반을 마련하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.