• Title/Summary/Keyword: Word Corpus

Search Result 284, Processing Time 0.026 seconds

Comparative Analysis of 4-gram Word Clusters in South vs. North Korean High School English Textbooks (남북한 고등학교 영어교과서 4-gram 연어 비교 분석)

  • Kim, Jeong-ryeol
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.274-281
    • /
    • 2020
  • N-gram analysis casts a new look at the n-word cluster in use different from the previously known idioms. It analyzes a corpus of English textbooks for frequently occurring n consecutive words mechanically using a concordance software, which is different from the previously known idioms. The current paper aims at extracting and comparing 4-gram words clusters between South Korean high school English textbooks and its North Korean counterpart. The classification criteria includes number of tokens and types between the two across oral and written languages in the textbooks. The criteria also use the grammatical categories and functional categories to classify and compare the 4-gram words clusters. The grammatical categories include noun phrases, verb phrases, prepositional phrases, partial clauses and others. The functional categories include deictic function, text organizers, stance and others. The findings are: South Korean high school English textbook contains more tokens and types in both oral and written languages. Verb phrase and partial clause 4-grams are grammatically most frequently encountered categories across both South and North Korean high school English textbooks. Stance is most dominant functional category in both South and North Korean English textbooks.

Pivot Discrimination Approach for Paraphrase Extraction from Bilingual Corpus (이중 언어 기반 패러프레이즈 추출을 위한 피봇 차별화 방법)

  • Park, Esther;Lee, Hyoung-Gyu;Kim, Min-Jeong;Rim, Hae-Chang
    • Korean Journal of Cognitive Science
    • /
    • v.22 no.1
    • /
    • pp.57-78
    • /
    • 2011
  • Paraphrasing is the act of writing a text using other words without altering the meaning. Paraphrases can be used in many fields of natural language processing. In particular, paraphrases can be incorporated in machine translation in order to improve the coverage and the quality of translation. Recently, the approaches on paraphrase extraction utilize bilingual parallel corpora, which consist of aligned sentence pairs. In these approaches, paraphrases are identified, from the word alignment result, by pivot phrases which are the phrases in one language to which two or more phrases are connected in the other language. However, the word alignment is itself a very difficult task, so there can be many alignment errors. Moreover, the alignment errors can lead to the problem of selecting incorrect pivot phrases. In this study, we propose a method in paraphrase extraction that discriminates good pivot phrases from bad pivot phrases. Each pivot phrase is weighted according to its reliability, which is scored by considering the lexical and part-of-speech information. The experimental result shows that the proposed method achieves higher precision and recall of the paraphrase extraction than the baseline. Also, we show that the extracted paraphrases can increase the coverage of the Korean-English machine translation.

  • PDF

A Method for Spelling Error Correction in Korean Using a Hangul Edit Distance Algorithm (한글 편집거리 알고리즘을 이용한 한국어 철자오류 교정방법)

  • Bak, Seung Hyeon;Lee, Eun Ji;Kim, Pan Koo
    • Smart Media Journal
    • /
    • v.6 no.1
    • /
    • pp.16-21
    • /
    • 2017
  • Long time has passed since computers which used to be a means of research were commercialized and available for the general public. People used writing instruments to write before computer was commercialized. However, today a growing number of them are using computers to write instead. Computerized word processing helps write faster and reduces fatigue of hands than writing instruments, making it better fit to making long texts. However, word processing programs are more likely to cause spelling errors by the mistake of users. Spelling errors distort the shape of words, making it easy for the writer to find and correct directly, but those caused due to users' lack of knowledge or those hard to find may make it almost impossible to produce a document free of spelling errors. However, spelling errors in important documents such as theses or business proposals may lead to falling reliability. Consequently, it is necessary to conduct research on high-level spelling error correction programs for the general public. This study was designed to produce a system to correct sentence-level spelling errors to normal words with Korean alphabet similarity algorithm. On the basis of findings reported in related literatures that corrected words are significantly similar to misspelled words in form, spelling errors were extracted from a corpus. Extracted corrected words were replaced with misspelled ones to correct spelling errors with spelling error detection algorithm.

A Deep Learning-based Depression Trend Analysis of Korean on Social Media (딥러닝 기반 소셜미디어 한글 텍스트 우울 경향 분석)

  • Park, Seojeong;Lee, Soobin;Kim, Woo Jung;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.1
    • /
    • pp.91-117
    • /
    • 2022
  • The number of depressed patients in Korea and around the world is rapidly increasing every year. However, most of the mentally ill patients are not aware that they are suffering from the disease, so adequate treatment is not being performed. If depressive symptoms are neglected, it can lead to suicide, anxiety, and other psychological problems. Therefore, early detection and treatment of depression are very important in improving mental health. To improve this problem, this study presented a deep learning-based depression tendency model using Korean social media text. After collecting data from Naver KonwledgeiN, Naver Blog, Hidoc, and Twitter, DSM-5 major depressive disorder diagnosis criteria were used to classify and annotate classes according to the number of depressive symptoms. Afterwards, TF-IDF analysis and simultaneous word analysis were performed to examine the characteristics of each class of the corpus constructed. In addition, word embedding, dictionary-based sentiment analysis, and LDA topic modeling were performed to generate a depression tendency classification model using various text features. Through this, the embedded text, sentiment score, and topic number for each document were calculated and used as text features. As a result, it was confirmed that the highest accuracy rate of 83.28% was achieved when the depression tendency was classified based on the KorBERT algorithm by combining both the emotional score and the topic of the document with the embedded text. This study establishes a classification model for Korean depression trends with improved performance using various text features, and detects potential depressive patients early among Korean online community users, enabling rapid treatment and prevention, thereby enabling the mental health of Korean society. It is significant in that it can help in promotion.

Addressing Low-Resource Problems in Statistical Machine Translation of Manual Signals in Sign Language (말뭉치 자원 희소성에 따른 통계적 수지 신호 번역 문제의 해결)

  • Park, Hancheol;Kim, Jung-Ho;Park, Jong C.
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.163-170
    • /
    • 2017
  • Despite the rise of studies in spoken to sign language translation, low-resource problems of sign language corpus have been rarely addressed. As a first step towards translating from spoken to sign language, we addressed the problems arising from resource scarcity when translating spoken language to manual signals translation using statistical machine translation techniques. More specifically, we proposed three preprocessing methods: 1) paraphrase generation, which increases the size of the corpora, 2) lemmatization, which increases the frequency of each word in the corpora and the translatability of new input words in spoken language, and 3) elimination of function words that are not glossed into manual signals, which match the corresponding constituents of the bilingual sentence pairs. In our experiments, we used different types of English-American sign language parallel corpora. The experimental results showed that the system with each method and the combination of the methods improved the quality of manual signals translation, regardless of the type of the corpora.

A Hybrid of Rule based Method and Memory based Loaming for Korean Text Chunking (한국어 구 단위화를 위한 규칙 기반 방법과 기억 기반 학습의 결합)

  • 박성배;장병탁
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.3
    • /
    • pp.369-378
    • /
    • 2004
  • In partially free word order languages like Korean and Japanese, the rule-based method is effective for text chunking, and shows the performance as high as machine learning methods even with a few rules due to the well-developed overt Postpositions and endings. However, it has no ability to handle the exceptions of the rules. Exception handling is an important work in natural language processing, and the exceptions can be efficiently processed in memory-based teaming. In this paper, we propose a hybrid of rule-based method and memory-based learning for Korean text chunking. The proposed method is primarily based on the rules, and then the chunks estimated by the rules are verified by memory-based classifier. An evaluation of the proposed method on Korean STEP 2000 corpus yields the improvement in F-score over the rules or various machine teaming methods alone. The final F-score is 94.19, while those of the rules and SVMs, the best machine learning method for this task, are just 91.87 and 92.54 respectively.

Sentiment Analysis System Using Stanford Sentiment Treebank (스탠포드 감성 트리 말뭉치를 이용한 감성 분류 시스템)

  • Lee, Songwook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.274-279
    • /
    • 2015
  • The main goal of this research is to build a sentiment analysis system which automatically determines user opinions of the Stanford Sentiment Treebank in terms of three sentiments such as positive, negative, and neutral. Firstly, sentiment sentences are POS tagged and parsed to dependency structures. All nodes of the Treebank and their polarities are automatically extracted from the Treebank. We train two Support Vector Machines models. One is for a node level classification and the other is for a sentence level. We have tried various type of features such as word lexicons, POS tags, Sentiment lexicons, head-modifier relations, and sibling relations. Though we acquired 74.2% in accuracy on the test set for 3 class node level classification and 67.0% for 3 class sentence level classification, our experimental results for 2 class classification are comparable to those of the state of art system using the same corpus.

Enhancing Performance of Bilingual Lexicon Extraction through Refinement of Pivot-Context Vectors (중간언어 문맥벡터의 정제를 통한 이중언어 사전 구축의 성능개선)

  • Kwon, Hong-Seok;Seo, Hyung-Won;Kim, Jae-Hoon
    • Journal of KIISE:Software and Applications
    • /
    • v.41 no.7
    • /
    • pp.492-500
    • /
    • 2014
  • This paper presents the performance enhancement of automatic bilingual lexicon extraction by using refinement of pivot-context vectors under the standard pivot-based approach, which is very effective method for less-resource language pairs. In this paper, we gradually improve the performance through two different refinements of pivot-context vectors: One is to filter out unhelpful elements of the pivot-context vectors and to revise the values of the vectors through bidirectional translation probabilities estimated by Anymalign and another one is to remove non-noun elements from the original vectors. In this paper, experiments have been conducted on two different language pairs that are bi-directional Korean-Spanish and Korean-French, respectively. The experimental results have demonstrated that our method for high-frequency words shows at least 48.5% at the top 1 and up to 88.5% at the top 20 and for the low-frequency words at least 43.3% at the top 1 and up to 48.9% at the top 20.

Korean Compound Noun Decomposition and Semantic Tagging System using User-Word Intelligent Network (U-WIN을 이용한 한국어 복합명사 분해 및 의미태깅 시스템)

  • Lee, Yong-Hoon;Ock, Cheol-Young;Lee, Eung-Bong
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.63-76
    • /
    • 2012
  • We propose a Korean compound noun semantic tagging system using statistical compound noun decomposition and semantic relation information extracted from a lexical semantic network(U-WIN) and dictionary definitions. The system consists of three phases including compound noun decomposition, semantic constraint, and semantic tagging. In compound noun decomposition, best candidates are selected using noun location frequencies extracted from a Sejong corpus, and re-decomposes noun for semantic constraint and restores foreign nouns. The semantic constraints phase finds possible semantic combinations by using origin information in dictionary and Naive Bayes Classifier, in order to decrease the computation time and increase the accuracy of semantic tagging. The semantic tagging phase calculates the semantic similarity between decomposed nouns and decides the semantic tags. We have constructed 40,717 experimental compound nouns data set from Standard Korean Language Dictionary, which consists of more than 3 characters and is semantically tagged. From the experiments, the accuracy of compound noun decomposition is 99.26%, and the accuracy of semantic tagging is 95.38% respectively.

Keyword Extraction from News Corpus using Modified TF-IDF (TF-IDF의 변형을 이용한 전자뉴스에서의 키워드 추출 기법)

  • Lee, Sung-Jick;Kim, Han-Joon
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.4
    • /
    • pp.59-73
    • /
    • 2009
  • Keyword extraction is an important and essential technique for text mining applications such as information retrieval, text categorization, summarization and topic detection. A set of keywords extracted from a large-scale electronic document data are used for significant features for text mining algorithms and they contribute to improve the performance of document browsing, topic detection, and automated text classification. This paper presents a keyword extraction technique that can be used to detect topics for each news domain from a large document collection of internet news portal sites. Basically, we have used six variants of traditional TF-IDF weighting model. On top of the TF-IDF model, we propose a word filtering technique called 'cross-domain comparison filtering'. To prove effectiveness of our method, we have analyzed usefulness of keywords extracted from Korean news articles and have presented changes of the keywords over time of each news domain.

  • PDF